no code implementations • EAMT 2022 • Artur Nowakowski, Krzysztof Jassem, Maciej Lison, Rafał Jaworski, Tomasz Dwojak, Karolina Wiater, Olga Posesor
This paper reports on the implementation and deployment of an MT system in the Polish branch of EY Global Limited.
no code implementations • WMT (EMNLP) 2021 • Artur Nowakowski, Tomasz Dwojak
This paper presents the Adam Mickiewicz University’s (AMU) submissions to the WMT 2021 News Translation Task.
no code implementations • 8 Jun 2022 • Michał Pietruszka, Michał Turski, Łukasz Borchmann, Tomasz Dwojak, Gabriela Pałka, Karolina Szyndler, Dawid Jurkiewicz, Łukasz Garncarek
The output structure of database-like tables, consisting of values structured in horizontal rows and vertical columns identifiable by name, can cover a wide range of NLP tasks.
Joint Entity and Relation Extraction
Knowledge Base Population
1 code implementation • 18 Feb 2021 • Rafał Powalski, Łukasz Borchmann, Dawid Jurkiewicz, Tomasz Dwojak, Michał Pietruszka, Gabriela Pałka
We address the challenging problem of Natural Language Comprehension beyond plain-text documents by introducing the TILT neural network architecture which simultaneously learns layout information, visual features, and textual semantics.
Ranked #2 on
on
1 code implementation • CONLL 2020 • Tomasz Dwojak, Michał Pietruszka, Łukasz Borchmann, Jakub Chłędowski, Filip Graliński
This paper investigates various Transformer architectures on the WikiReading Information Extraction and Machine Reading Comprehension dataset.
no code implementations • 15 Jun 2020 • Tomasz Dwojak, Michał Pietruszka, Łukasz Borchmann, Filip Graliński, Jakub Chłędowski
In this paper, we investigate the Dual-source Transformer architecture on the WikiReading information extraction and machine reading comprehension dataset.
no code implementations • WS 2018 • Hieu Hoang, Tomasz Dwojak, Rihards Krislauks, Daniel Torregrosa, Kenneth Heafield
This paper describes the submissions to the efficiency track for GPUs at the Workshop for Neural Machine Translation and Generation by members of the University of Edinburgh, Adam Mickiewicz University, Tilde and University of Alicante.
2 code implementations • ACL 2018 • Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay Bogoychev, André F. T. Martins, Alexandra Birch
We present Marian, an efficient and self-contained Neural Machine Translation framework with an integrated automatic differentiation engine based on dynamic computation graphs.
no code implementations • EACL 2017 • Renars Liepins, Ulrich Germann, Guntis Barzdins, Alex Birch, ra, Steve Renals, Susanne Weber, Peggy van der Kreeft, Herv{\'e} Bourlard, Jo{\~a}o Prieto, Ond{\v{r}}ej Klejch, Peter Bell, Alex Lazaridis, ros, Alfonso Mendes, Sebastian Riedel, Mariana S. C. Almeida, Pedro Balage, Shay B. Cohen, Tomasz Dwojak, Philip N. Garner, Andreas Giefer, Marcin Junczys-Dowmunt, Hina Imran, David Nogueira, Ahmed Ali, Mir, Sebasti{\~a}o a, Andrei Popescu-Belis, Lesly Miculicich Werlen, Nikos Papasarantopoulos, Abiola Obamuyide, Clive Jones, Fahim Dalvi, Andreas Vlachos, Yang Wang, Sibo Tong, Rico Sennrich, Nikolaos Pappas, Shashi Narayan, Marco Damonte, Nadir Durrani, Sameer Khurana, Ahmed Abdelali, Hassan Sajjad, Stephan Vogel, David Sheppey, Chris Hernon, Jeff Mitchell
We present the first prototype of the SUMMA Platform: an integrated platform for multilingual media monitoring.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+5
no code implementations • WS 2017 • Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn, Alexandra Birch
Our results on WMT data show that explicitly modeling target-syntax improves machine translation quality for German->English, a high-resource pair, and for Romanian->English, a low-resource pair and also several syntactic phenomena including prepositional phrase attachment.
2 code implementations • IWSLT 2016 • Marcin Junczys-Dowmunt, Tomasz Dwojak, Hieu Hoang
In this paper we provide the largest published comparison of translation quality for phrase-based SMT and neural machine translation across 30 translation directions.
1 code implementation • WS 2016 • Marcin Junczys-Dowmunt, Tomasz Dwojak, Rico Sennrich
For the Russian-English task, our submission achieves the top BLEU result, outperforming the best pure neural system by 1. 1 BLEU points and our own phrase-based baseline by 1. 6 BLEU.