1 code implementation • 11 Jul 2023 • Tiffany J. Callahan, Ignacio J. Tripodi, Adrianne L. Stefanski, Luca Cappelletti, Sanya B. Taneja, Jordan M. Wyrwa, Elena Casiraghi, Nicolas A. Matentzoglu, Justin Reese, Jonathan C. Silverstein, Charles Tapley Hoyt, Richard D. Boyce, Scott A. Malec, Deepak R. Unni, Marcin P. Joachimiak, Peter N. Robinson, Christopher J. Mungall, Emanuele Cavalleri, Tommaso Fontana, Giorgio Valentini, Marco Mesiti, Lucas A. Gillenwater, Brook Santangelo, Nicole A. Vasilevsky, Robert Hoehndorf, Tellen D. Bennett, Patrick B. Ryan, George Hripcsak, Michael G. Kahn, Michael Bada, William A. Baumgartner Jr, Lawrence E. Hunter
Translational research requires data at multiple scales of biological organization.
no code implementations • 31 Jan 2023 • J Harry Caufield, Tim Putman, Kevin Schaper, Deepak R Unni, Harshad Hegde, Tiffany J Callahan, Luca Cappelletti, Sierra AT Moxon, Vida Ravanmehr, Seth Carbon, Lauren E Chan, Katherina Cortes, Kent A Shefchek, Glass Elsarboukh, James P Balhoff, Tommaso Fontana, Nicolas Matentzoglu, Richard M Bruskiewich, Anne E Thessen, Nomi L Harris, Monica C Munoz-Torres, Melissa A Haendel, Peter N Robinson, Marcin P Joachimiak, Christopher J Mungall, Justin T Reese
Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of knowledge graphs is lacking.
2 code implementations • 12 Oct 2021 • Luca Cappelletti, Tommaso Fontana, Elena Casiraghi, Vida Ravanmehr, Tiffany J. Callahan, Carlos Cano, Marcin P. Joachimiak, Christopher J. Mungall, Peter N. Robinson, Justin Reese, Giorgio Valentini
Graph Representation Learning (GRL) methods opened new avenues for addressing complex, real-world problems represented by graphs.
no code implementations • 5 Jan 2021 • Giorgio Valentini, Elena Casiraghi, Luca Cappelletti, Tommaso Fontana, Justin Reese, Peter Robinson
The development of Graph Representation Learning methods for heterogeneous graphs is fundamental in several real-world applications, since in several contexts graphs are characterized by different types of nodes and edges.