2 code implementations • 4 Jun 2021 • Soroosh Shahtalebi, Jean-Christophe Gagnon-Audet, Touraj Laleh, Mojtaba Faramarzi, Kartik Ahuja, Irina Rish
A major bottleneck in the real-world applications of machine learning models is their failure in generalizing to unseen domains whose data distribution is not i. i. d to the training domains.
no code implementations • ICML Workshop LifelongML 2020 • Touraj Laleh, Mojtaba Faramarzi, Irina Rish, Sarath Chandar
Most proposed approaches for this issue try to compensate for the effects of parameter updates in the batch incremental setup in which the training model visits a lot of samples for several epochs.
1 code implementation • NeurIPS 2021 • Pouya Bashivan, Reza Bayat, Adam Ibrahim, Kartik Ahuja, Mojtaba Faramarzi, Touraj Laleh, Blake Aaron Richards, Irina Rish
Our method, called Adversarial Feature Desensitization (AFD), aims at learning features that are invariant towards adversarial perturbations of the inputs.