Search Results for author: Towaki Takikawa

Found 12 papers, 6 papers with code

Lagrangian Hashing for Compressed Neural Field Representations

no code implementations9 Sep 2024 Shrisudhan Govindarajan, Zeno Sambugaro, Akhmedkhan, Shabanov, Towaki Takikawa, Daniel Rebain, Weiwei Sun, Nicola Conci, Kwang Moo Yi, Andrea Tagliasacchi

We present Lagrangian Hashing, a representation for neural fields combining the characteristics of fast training NeRF methods that rely on Eulerian grids (i. e.~InstantNGP), with those that employ points equipped with features as a way to represent information (e. g. 3D Gaussian Splatting or PointNeRF).

Learned Single-Pass Multitasking Perceptual Graphics for Immersive Displays

no code implementations31 Jul 2024 Doğa Yılmaz, Towaki Takikawa, Duygu Ceylan, Kaan Akşit

Uniquely, a single inference step of our model supports different permutations of these perceptual tasks at different prompted rates (i. e., mildly, lightly), eliminating the need for daisy-chaining multiple models to get the desired perceptual effect.

Image Denoising

What You See is What You GAN: Rendering Every Pixel for High-Fidelity Geometry in 3D GANs

no code implementations CVPR 2024 Alex Trevithick, Matthew Chan, Towaki Takikawa, Umar Iqbal, Shalini De Mello, Manmohan Chandraker, Ravi Ramamoorthi, Koki Nagano

3D-aware Generative Adversarial Networks (GANs) have shown remarkable progress in learning to generate multi-view-consistent images and 3D geometries of scenes from collections of 2D images via neural volume rendering.

3D geometry Neural Rendering +1

Compact Neural Graphics Primitives with Learned Hash Probing

no code implementations28 Dec 2023 Towaki Takikawa, Thomas Müller, Merlin Nimier-David, Alex Evans, Sanja Fidler, Alec Jacobson, Alexander Keller

Neural graphics primitives are faster and achieve higher quality when their neural networks are augmented by spatial data structures that hold trainable features arranged in a grid.

Quantization

ATT3D: Amortized Text-to-3D Object Synthesis

no code implementations ICCV 2023 Jonathan Lorraine, Kevin Xie, Xiaohui Zeng, Chen-Hsuan Lin, Towaki Takikawa, Nicholas Sharp, Tsung-Yi Lin, Ming-Yu Liu, Sanja Fidler, James Lucas

Text-to-3D modelling has seen exciting progress by combining generative text-to-image models with image-to-3D methods like Neural Radiance Fields.

Image to 3D Object +1

Magic3D: High-Resolution Text-to-3D Content Creation

1 code implementation CVPR 2023 Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, Tsung-Yi Lin

DreamFusion has recently demonstrated the utility of a pre-trained text-to-image diffusion model to optimize Neural Radiance Fields (NeRF), achieving remarkable text-to-3D synthesis results.

Text to 3D Vocal Bursts Intensity Prediction

Variable Bitrate Neural Fields

1 code implementation15 Jun 2022 Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan McGuire, Alec Jacobson, Sanja Fidler

Neural approximations of scalar and vector fields, such as signed distance functions and radiance fields, have emerged as accurate, high-quality representations.

Decoder

RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis

no code implementations14 May 2022 Jonathan Tremblay, Moustafa Meshry, Alex Evans, Jan Kautz, Alexander Keller, Sameh Khamis, Thomas Müller, Charles Loop, Nathan Morrical, Koki Nagano, Towaki Takikawa, Stan Birchfield

We present a large-scale synthetic dataset for novel view synthesis consisting of ~300k images rendered from nearly 2000 complex scenes using high-quality ray tracing at high resolution (1600 x 1600 pixels).

Novel View Synthesis

Neural Fields in Visual Computing and Beyond

1 code implementation22 Nov 2021 Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari, James Tompkin, Vincent Sitzmann, Srinath Sridhar

Recent advances in machine learning have created increasing interest in solving visual computing problems using a class of coordinate-based neural networks that parametrize physical properties of scenes or objects across space and time.

3D Reconstruction Image Animation +1

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes

2 code implementations CVPR 2021 Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, Sanja Fidler

We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs, while achieving state-of-the-art geometry reconstruction quality.

Gated-SCNN: Gated Shape CNNs for Semantic Segmentation

4 code implementations ICCV 2019 Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

Here, we propose a new two-stream CNN architecture for semantic segmentation that explicitly wires shape information as a separate processing branch, i. e. shape stream, that processes information in parallel to the classical stream.

Image Segmentation Semantic Segmentation

Cannot find the paper you are looking for? You can Submit a new open access paper.