no code implementations • ACL 2022 • Carolina Cuesta-Lazaro, Animesh Prasad, Trevor Wood
We present a complete pipeline to extract characters in a novel and link them to their direct-speech utterances.
no code implementations • 7 Dec 2022 • Daxin Tan, Nikos Kargas, David McHardy, Constantinos Papayiannis, Antonio Bonafonte, Marek Strelec, Jonas Rohnke, Agis Oikonomou Filandras, Trevor Wood
Entrainment is the phenomenon by which an interlocutor adapts their speaking style to align with their partner in conversations.
no code implementations • 13 Feb 2022 • Mateusz Lajszczak, Animesh Prasad, Arent van Korlaar, Bajibabu Bollepalli, Antonio Bonafonte, Arnaud Joly, Marco Nicolis, Alexis Moinet, Thomas Drugman, Trevor Wood, Elena Sokolova
This paper presents a novel data augmentation technique for text-to-speech (TTS), that allows to generate new (text, audio) training examples without requiring any additional data.
no code implementations • 24 Oct 2021 • Marek Strong, Jonas Rohnke, Antonio Bonafonte, Mateusz Łajszczak, Trevor Wood
We present a Split Vector Quantized Variational Autoencoder (SVQ-VAE) architecture using a split vector quantizer for NTTS, as an enhancement to the well-known Variational Autoencoder (VAE) and Vector Quantized Variational Autoencoder (VQ-VAE) architectures.
1 code implementation • NAACL 2019 • Nishant Prateek, Mateusz Łajszczak, Roberto Barra-Chicote, Thomas Drugman, Jaime Lorenzo-Trueba, Thomas Merritt, Srikanth Ronanki, Trevor Wood
Neural text-to-speech synthesis (NTTS) models have shown significant progress in generating high-quality speech, however they require a large quantity of training data.