no code implementations • 14 Mar 2023 • Øyvind Meinich-Bache, Simon Lennart Austnes, Kjersti Engan, Ivar Austvoll, Trygve Eftestøl, Helge Myklebust, Simeon Kusulla, Hussein Kidanto, Hege Ersdal
An important step is to generate timelines of relevant resuscitation activities, including ventilation, stimulation, suction, etc., during the resuscitation episodes.
no code implementations • 14 Mar 2023 • Øyvind Meinich-Bache, Kjersti Engan, Ivar Austvoll, Trygve Eftestøl, Helge Myklebust, Ladislaus Blacy Yarrot, Hussein Kidanto, Hege Ersdal
Significance: This is the first step in a thorough analysis of newborn resuscitation episodes, which could provide important insight about the importance and effect of different newborn resuscitation activities
no code implementations • 9 Mar 2023 • Saul Fuster, Farbod Khoraminia, Trygve Eftestøl, Tahlita C. M. Zuiverloon, Kjersti Engan
Accurate segmentation of tissue in histopathological images can be very beneficial for defining regions of interest (ROI) for streamline of diagnostic and prognostic tasks.
no code implementations • 29 Dec 2022 • Alvaro Fernandez-Quilez, Christoffer Gabrielsen Andersen, Trygve Eftestøl, Svein Reidar Kjosavik, Ketil Oppedal
Masked Image Modelling (MIM) has been shown to be an efficient self-supervised learning (SSL) pre-training paradigm when paired with transformer architectures and in the presence of a large amount of unlabelled natural images.
1 code implementation • 1 Nov 2021 • Saul Fuster, Trygve Eftestøl, Kjersti Engan
Strongly supervised learning requires detailed knowledge of truth labels at instance levels, and in many machine learning applications this is a major drawback.
no code implementations • 22 Jul 2021 • Alvaro Fernandez-Quilez, Trygve Eftestøl, Morten Goodwin, Svein Reidar Kjosavik, Ketil Oppedal
Nevertheless, they rely on large amounts of annotated data which is not common in the medical field.