1 code implementation • 24 May 2024 • Saul Fuster, Umay Kiraz, Trygve Eftestøl, Emiel A. M. Janssen, Kjersti Engan
To distinguish different levels of malignancy within specific regions of the slide, we include the origins of the tiles in our analysis.
1 code implementation • 24 May 2024 • Saul Fuster, Farbod Khoraminia, Julio Silva-Rodríguez, Umay Kiraz, Geert J. L. H. van Leenders, Trygve Eftestøl, Valery Naranjo, Emiel A. M. Janssen, Tahlita C. M. Zuiverloon, Kjersti Engan
We present a pioneering investigation into the application of deep learning techniques to analyze histopathological images for addressing the substantial challenge of automated prognostic prediction.
no code implementations • 15 Sep 2023 • Erlend Sortland Rolfsnes, Philip Thangngat, Trygve Eftestøl, Tobias Nordström, Fredrik Jäderling, Martin Eklund, Alvaro Fernandez-Quilez
Magnetic resonance imaging has evolved as a key component for prostate cancer (PCa) detection, substantially increasing the radiologist workload.
no code implementations • 12 Aug 2023 • Alvaro Fernandez-Quilez, Linas Vidziunas, Ørjan Kløvfjell Thoresen, Ketil Oppedal, Svein Reidar Kjosavik, Trygve Eftestøl
Our results show the potential of OOD approaches for PCa lesion detection based on MRI.
no code implementations • 12 Aug 2023 • Tim Nikolass Lindeijer, Tord Martin Ytredal, Trygve Eftestøl, Tobias Nordström, Fredrik Jäderling, Martin Eklund, Alvaro Fernandez-Quilez
Further, our approach shows good external volumetric generalization in an in-house dataset when tested with multi-view data (2. 76+-1. 89% compared to 3. 92+-3. 31%, P=. 002), showing the feasibility of exploiting non-annotated multi-view data through contrastive learning whilst providing flexibility at deployment in the event of missing views.
no code implementations • 14 Mar 2023 • Øyvind Meinich-Bache, Kjersti Engan, Ivar Austvoll, Trygve Eftestøl, Helge Myklebust, Ladislaus Blacy Yarrot, Hussein Kidanto, Hege Ersdal
Significance: This is the first step in a thorough analysis of newborn resuscitation episodes, which could provide important insight about the importance and effect of different newborn resuscitation activities
no code implementations • 14 Mar 2023 • Øyvind Meinich-Bache, Simon Lennart Austnes, Kjersti Engan, Ivar Austvoll, Trygve Eftestøl, Helge Myklebust, Simeon Kusulla, Hussein Kidanto, Hege Ersdal
An important step is to generate timelines of relevant resuscitation activities, including ventilation, stimulation, suction, etc., during the resuscitation episodes.
no code implementations • 9 Mar 2023 • Saul Fuster, Farbod Khoraminia, Trygve Eftestøl, Tahlita C. M. Zuiverloon, Kjersti Engan
Accurate segmentation of tissue in histopathological images can be very beneficial for defining regions of interest (ROI) for streamline of diagnostic and prognostic tasks.
no code implementations • 29 Dec 2022 • Alvaro Fernandez-Quilez, Christoffer Gabrielsen Andersen, Trygve Eftestøl, Svein Reidar Kjosavik, Ketil Oppedal
Masked Image Modelling (MIM) has been shown to be an efficient self-supervised learning (SSL) pre-training paradigm when paired with transformer architectures and in the presence of a large amount of unlabelled natural images.
1 code implementation • 1 Nov 2021 • Saul Fuster, Trygve Eftestøl, Kjersti Engan
Strongly supervised learning requires detailed knowledge of truth labels at instance levels, and in many machine learning applications this is a major drawback.
no code implementations • 22 Jul 2021 • Alvaro Fernandez-Quilez, Trygve Eftestøl, Morten Goodwin, Svein Reidar Kjosavik, Ketil Oppedal
Nevertheless, they rely on large amounts of annotated data which is not common in the medical field.