no code implementations • 5 Mar 2023 • Hsuan-Kung Yang, Yu-Ying Chen, Tsung-Chih Chiang, Chia-Chuan Hsu, Chun-Chia Huang, Chun-Wei Huang, Jou-Min Liu, Ting-Ru Liu, Tsu-Ching Hsiao, Chun-Yi Lee
This paper explores the impact of virtual guidance on mid-level representation-based navigation, where an agent performs navigation tasks based solely on visual observations.
no code implementations • 9 Mar 2022 • Hsuan-Kung Yang, Tsu-Ching Hsiao, Ting-Hsuan Liao, Hsu-Shen Liu, Li-Yuan Tsao, Tzu-Wen Wang, Shan-Ya Yang, Yu-Wen Chen, Huang-Ru Liao, Chun-Yi Lee
In this paper, we introduce a new concept of incorporating factorized flow maps as mid-level representations, for bridging the perception and the control modules in modular learning based robotic frameworks.
1 code implementation • 1 Jan 2021 • Yu Ming Chen, Kuan-Yu Chang, Chien Liu, Tsu-Ching Hsiao, Zhang-Wei Hong, Chun-Yi Lee
Macro actions have been demonstrated to be beneficial for the learning processes of an agent.
no code implementations • 1 Feb 2018 • Zhang-Wei Hong, Chen Yu-Ming, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, Hsuan-Kung Yang, Brian Hsi-Lin Ho, Chih-Chieh Tu, Yueh-Chuan Chang, Tsu-Ching Hsiao, Hsin-Wei Hsiao, Sih-Pin Lai, Chun-Yi Lee
Collecting training data from the physical world is usually time-consuming and even dangerous for fragile robots, and thus, recent advances in robot learning advocate the use of simulators as the training platform.