no code implementations • 1 Apr 2025 • Haonan Wang, Zeli Liu, Kajimusugura Hoshino, Tuo Zhang, John Paul Walters, Stephen Crago
Experimental results demonstrate that FedPaI consistently outperforms existing efficient FL that applies conventional iterative pruning with significant leading in efficiency and model accuracy.
no code implementations • 14 Mar 2025 • Jihyun Lim, Junhyuk Jo, Tuo Zhang, Salman Avestimehr, Sunwoo Lee
Many existing studies adopt the logit ensemble method to perform KD on the server side.
no code implementations • 16 Feb 2025 • Tuo Zhang, Asal Mehradfar, Dimitrios Dimitriadis, Salman Avestimehr
Deploying large language models (LLMs) in edge-cloud environments requires an efficient routing strategy to balance cost and response quality.
no code implementations • 21 Jan 2025 • Tuo Zhang, Leonardo Stella, Julian Barreiro-Gomez
Replicator dynamics, the most well-known model from evolutionary game theory (EGT), provide a theoretical framework for the convergence of the trajectories to Nash equilibria and, as a result, have been used to ensure formal guarantees for MARL algorithms in stable game settings.
no code implementations • 16 Nov 2024 • Shaochen Xu, Yifan Zhou, Zhengliang Liu, Zihao Wu, Tianyang Zhong, Huaqin Zhao, Yiwei Li, Hanqi Jiang, Yi Pan, JunHao Chen, Jin Lu, Wei zhang, Tuo Zhang, Lu Zhang, Dajiang Zhu, Xiang Li, Wei Liu, Quanzheng Li, Andrea Sikora, Xiaoming Zhai, Zhen Xiang, Tianming Liu
Artificial Intelligence (AI) has become essential in modern healthcare, with large language models (LLMs) offering promising advances in clinical decision-making.
no code implementations • 15 Nov 2024 • Jiaqi Wang, Huan Zhao, Zhenyuan Yang, Peng Shu, JunHao Chen, Haobo Sun, Ruixi Liang, Shixin Li, Pengcheng Shi, Longjun Ma, Zongjia Liu, Zhengliang Liu, Tianyang Zhong, Yutong Zhang, Chong Ma, Xin Zhang, Tuo Zhang, Tianli Ding, Yudan Ren, Tianming Liu, Xi Jiang, Shu Zhang
In this paper, we review legal testing methods based on Large Language Models (LLMs), using the OPENAI o1 model as a case study to evaluate the performance of large models in applying legal provisions.
no code implementations • 22 Oct 2024 • Zhenyuan Yang, Zhengliang Liu, Jing Zhang, Cen Lu, Jiaxin Tai, Tianyang Zhong, Yiwei Li, Siyan Zhao, Teng Yao, Qing Liu, Jinlin Yang, Qixin Liu, Zhaowei Li, Kexin Wang, Longjun Ma, Dajiang Zhu, Yudan Ren, Bao Ge, Wei zhang, Ning Qiang, Tuo Zhang, Tianming Liu
This study examines the capabilities of advanced Large Language Models (LLMs), particularly the o1 model, in the context of literary analysis.
no code implementations • 28 Sep 2024 • Hao Chen, Wei Zhao, Yingli Li, Tianyang Zhong, Yisong Wang, Youlan Shang, Lei Guo, Junwei Han, Tianming Liu, Jun Liu, Tuo Zhang
Medical image analysis is crucial in modern radiological diagnostics, especially given the exponential growth in medical imaging data.
no code implementations • 18 Sep 2024 • Huawen Hu, Enze Shi, Chenxi Yue, Shuocun Yang, Zihao Wu, Yiwei Li, Tianyang Zhong, Tuo Zhang, Tianming Liu, Shu Zhang
In this paper, we propose HARP (Human-Assisted Regrouping with Permutation Invariant Critic), a multi-agent reinforcement learning framework designed for group-oriented tasks.
Multi-agent Reinforcement Learning
reinforcement-learning
+1
no code implementations • 17 Sep 2024 • Yanqing Kang, Di Zhu, Haiyang Zhang, Enze Shi, Sigang Yu, Jinru Wu, Xuhui Wang, Xuan Liu, Geng Chen, Xi Jiang, Tuo Zhang, Shu Zhang
This approach enables the exploration of I-nodes for brain networks, which is also lacking in current studies.
no code implementations • 15 Sep 2024 • Wenjun Li, Ying Cai, Ziyang Wu, Wenyi Zhang, Yifan Chen, Rundong Qi, Mengqi Dong, Peigen Chen, Xiao Dong, Fenghao Shi, Lei Guo, Junwei Han, Bao Ge, Tianming Liu, Lin Gan, Tuo Zhang
Music is essential in daily life, fulfilling emotional and entertainment needs, and connecting us personally, socially, and culturally.
no code implementations • 28 Aug 2024 • Tiantian Feng, Tuo Zhang, Salman Avestimehr, Shrikanth S. Narayanan
Multimodal Federated Learning frequently encounters challenges of client modality heterogeneity, leading to undesired performances for secondary modality in multimodal learning.
no code implementations • 8 Jul 2024 • Yutong Zhang, Yi Pan, Tianyang Zhong, Peixin Dong, Kangni Xie, Yuxiao Liu, Hanqi Jiang, Zhengliang Liu, Shijie Zhao, Tuo Zhang, Xi Jiang, Dinggang Shen, Tianming Liu, Xin Zhang
Our experimental results demonstrated that Gemini-series models excelled in report generation and lesion detection but faces challenges in disease classification and anatomical localization.
no code implementations • 21 Jun 2024 • Sunwoo Lee, Tuo Zhang, Saurav Prakash, Yue Niu, Salman Avestimehr
In Federated Learning (FL), clients may have weak devices that cannot train the full model or even hold it in their memory space.
1 code implementation • 14 Jun 2024 • Tuo Zhang, Tiantian Feng, Yibin Ni, Mengqin Cao, Ruying Liu, Katharine Butler, Yanjun Weng, Mi Zhang, Shrikanth S. Narayanan, Salman Avestimehr
Large vision-language models (VLMs) have demonstrated remarkable abilities in understanding everyday content.
no code implementations • 16 May 2024 • Tuo Zhang, Jinyue Yuan, Salman Avestimehr
Numerous recent works aim to enhance the efficacy of Large Language Models (LLMs) through strategic prompting.
1 code implementation • 19 Mar 2024 • Chong Ma, Hanqi Jiang, WenTing Chen, Yiwei Li, Zihao Wu, Xiaowei Yu, Zhengliang Liu, Lei Guo, Dajiang Zhu, Tuo Zhang, Dinggang Shen, Tianming Liu, Xiang Li
This data-reliance may lead to low generalization of the learned alignment relationships.
no code implementations • 4 Jan 2024 • Yiheng Liu, Hao He, Tianle Han, Xu Zhang, Mengyuan Liu, Jiaming Tian, Yutong Zhang, Jiaqi Wang, Xiaohui Gao, Tianyang Zhong, Yi Pan, Shaochen Xu, Zihao Wu, Zhengliang Liu, Xin Zhang, Shu Zhang, Xintao Hu, Tuo Zhang, Ning Qiang, Tianming Liu, Bao Ge
Low-cost training and deployment of LLMs represent the future development trend.
no code implementations • 26 Dec 2023 • Xin Yuan, Ning li, Tuo Zhang, Muqing Li, YuWen Chen, Jose Fernan Martinez Ortega, Song Guo
Specifically, when the mobile user has a large model inference task needed to be calculated in the NOMA-based MEC, it will take the energy consumption of both device and edge server and the inference latency into account to find the optimal model split strategy, subchannel allocation strategy (uplink and downlink), and transmission power allocation strategy (uplink and downlink).
no code implementations • 21 Nov 2023 • Dominik Schlechtweg, Shafqat Mumtaz Virk, Pauline Sander, Emma Sköldberg, Lukas Theuer Linke, Tuo Zhang, Nina Tahmasebi, Jonas Kuhn, Sabine Schulte im Walde
We present the DURel tool that implements the annotation of semantic proximity between uses of words into an online, open source interface.
no code implementations • 10 Nov 2023 • Zhengliang Liu, Hanqi Jiang, Tianyang Zhong, Zihao Wu, Chong Ma, Yiwei Li, Xiaowei Yu, Yutong Zhang, Yi Pan, Peng Shu, Yanjun Lyu, Lu Zhang, Junjie Yao, Peixin Dong, Chao Cao, Zhenxiang Xiao, Jiaqi Wang, Huan Zhao, Shaochen Xu, Yaonai Wei, Jingyuan Chen, Haixing Dai, Peilong Wang, Hao He, Zewei Wang, Xinyu Wang, Xu Zhang, Lin Zhao, Yiheng Liu, Kai Zhang, Liheng Yan, Lichao Sun, Jun Liu, Ning Qiang, Bao Ge, Xiaoyan Cai, Shijie Zhao, Xintao Hu, Yixuan Yuan, Gang Li, Shu Zhang, Xin Zhang, Xi Jiang, Tuo Zhang, Dinggang Shen, Quanzheng Li, Wei Liu, Xiang Li, Dajiang Zhu, Tianming Liu
GPT-4V represents a breakthrough in artificial general intelligence (AGI) for computer vision, with applications in the biomedical domain.
no code implementations • 8 Oct 2023 • Tianyang Zhong, Wei Zhao, Yutong Zhang, Yi Pan, Peixin Dong, Zuowei Jiang, Xiaoyan Kui, Youlan Shang, Li Yang, Yaonai Wei, Longtao Yang, Hao Chen, Huan Zhao, Yuxiao Liu, Ning Zhu, Yiwei Li, Yisong Wang, Jiaqi Yao, Jiaqi Wang, Ying Zeng, Lei He, Chao Zheng, Zhixue Zhang, Ming Li, Zhengliang Liu, Haixing Dai, Zihao Wu, Lu Zhang, Shu Zhang, Xiaoyan Cai, Xintao Hu, Shijie Zhao, Xi Jiang, Xin Zhang, Xiang Li, Dajiang Zhu, Lei Guo, Dinggang Shen, Junwei Han, Tianming Liu, Jun Liu, Tuo Zhang
Radiology report generation, as a key step in medical image analysis, is critical to the quantitative analysis of clinically informed decision-making levels.
1 code implementation • 29 Sep 2023 • Samiul Alam, Tuo Zhang, Tiantian Feng, Hui Shen, Zhichao Cao, Dong Zhao, JeongGil Ko, Kiran Somasundaram, Shrikanth S. Narayanan, Salman Avestimehr, Mi Zhang
However, most existing FL works do not use datasets collected from authentic IoT devices and thus do not capture unique modalities and inherent challenges of IoT data.
no code implementations • 10 Sep 2023 • Yaonai Wei, Tuo Zhang, Han Zhang, Tianyang Zhong, Lin Zhao, Zhengliang Liu, Chong Ma, Songyao Zhang, Muheng Shang, Lei Du, Xiao Li, Tianming Liu, Junwei Han
In this study, we propose a method called Chat2Brain that combines LLMs to basic text-2-image model, known as Text2Brain, to map open-ended semantic queries to brain activation maps in data-scarce and complex query environments.
1 code implementation • 25 Jul 2023 • Zhengliang Liu, Tianyang Zhong, Yiwei Li, Yutong Zhang, Yi Pan, Zihao Zhao, Peixin Dong, Chao Cao, Yuxiao Liu, Peng Shu, Yaonai Wei, Zihao Wu, Chong Ma, Jiaqi Wang, Sheng Wang, Mengyue Zhou, Zuowei Jiang, Chunlin Li, Jason Holmes, Shaochen Xu, Lu Zhang, Haixing Dai, Kai Zhang, Lin Zhao, Yuanhao Chen, Xu Liu, Peilong Wang, Pingkun Yan, Jun Liu, Bao Ge, Lichao Sun, Dajiang Zhu, Xiang Li, Wei Liu, Xiaoyan Cai, Xintao Hu, Xi Jiang, Shu Zhang, Xin Zhang, Tuo Zhang, Shijie Zhao, Quanzheng Li, Hongtu Zhu, Dinggang Shen, Tianming Liu
The rise of large language models (LLMs) has marked a pivotal shift in the field of natural language processing (NLP).
no code implementations • 3 Jul 2023 • Jiaqi Wang, Zhengliang Liu, Lin Zhao, Zihao Wu, Chong Ma, Sigang Yu, Haixing Dai, Qiushi Yang, Yiheng Liu, Songyao Zhang, Enze Shi, Yi Pan, Tuo Zhang, Dajiang Zhu, Xiang Li, Xi Jiang, Bao Ge, Yixuan Yuan, Dinggang Shen, Tianming Liu, Shu Zhang
This review aims to summarize the methods employed in the computer vision domain for large vision models and visual prompt engineering, exploring the latest advancements in visual prompt engineering.
no code implementations • 15 Jun 2023 • Tiantian Feng, Digbalay Bose, Tuo Zhang, Rajat Hebbar, Anil Ramakrishna, Rahul Gupta, Mi Zhang, Salman Avestimehr, Shrikanth Narayanan
In order to facilitate the research in multimodal FL, we introduce FedMultimodal, the first FL benchmark for multimodal learning covering five representative multimodal applications from ten commonly used datasets with a total of eight unique modalities.
1 code implementation • 3 Jun 2023 • Tuo Zhang, Tiantian Feng, Samiul Alam, Dimitrios Dimitriadis, Sunwoo Lee, Mi Zhang, Shrikanth S. Narayanan, Salman Avestimehr
Through comprehensive ablation analysis across various data modalities, we discover that the downstream model generated by synthetic data plays a crucial role in controlling the direction of gradient diversity during FL training, which enhances convergence speed and contributes to the notable accuracy boost observed with GPT-FL.
no code implementations • 21 Apr 2023 • Tianyang Zhong, Yaonai Wei, Li Yang, Zihao Wu, Zhengliang Liu, Xiaozheng Wei, Wenjun Li, Junjie Yao, Chong Ma, Xiang Li, Dajiang Zhu, Xi Jiang, Junwei Han, Dinggang Shen, Tianming Liu, Tuo Zhang
The proposed method uses the strengths of LLMs' understanding and logical reasoning to correct the incomplete logical facts for optimizing the performance of perceptual module, by summarizing and reorganizing reasoning rules represented in natural language format.
2 code implementations • 17 Apr 2023 • Chong Ma, Zihao Wu, Jiaqi Wang, Shaochen Xu, Yaonai Wei, Fang Zeng, Zhengliang Liu, Xi Jiang, Lei Guo, Xiaoyan Cai, Shu Zhang, Tuo Zhang, Dajiang Zhu, Dinggang Shen, Tianming Liu, Xiang Li
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians, and it is typically written by radiologists based on the 'Findings' section.
no code implementations • 14 Apr 2023 • Tuo Zhang, Lei Gao, Sunwoo Lee, Mi Zhang, Salman Avestimehr
However, we show empirically that this method can lead to a substantial drop in training accuracy as well as a slower convergence rate.
no code implementations • 28 Mar 2023 • Lin Zhao, Lu Zhang, Zihao Wu, Yuzhong Chen, Haixing Dai, Xiaowei Yu, Zhengliang Liu, Tuo Zhang, Xintao Hu, Xi Jiang, Xiang Li, Dajiang Zhu, Dinggang Shen, Tianming Liu
Artificial General Intelligence (AGI) has been a long-standing goal of humanity, with the aim of creating machines capable of performing any intellectual task that humans can do.
no code implementations • 17 Jun 2022 • Chong Ma, Lin Zhao, Yuzhong Chen, David Weizhong Liu, Xi Jiang, Tuo Zhang, Xintao Hu, Dinggang Shen, Dajiang Zhu, Tianming Liu
In this work, we propose a novel and effective saliency-guided vision transformer (SGT) model to rectify shortcut learning in ViT with the absence of eye-gaze data.
no code implementations • 25 May 2022 • Chong Ma, Lin Zhao, Yuzhong Chen, Lu Zhang, Zhenxiang Xiao, Haixing Dai, David Liu, Zihao Wu, Zhengliang Liu, Sheng Wang, Jiaxing Gao, Changhe Li, Xi Jiang, Tuo Zhang, Qian Wang, Dinggang Shen, Dajiang Zhu, Tianming Liu
To address this problem, we propose to infuse human experts' intelligence and domain knowledge into the training of deep neural networks.
no code implementations • 21 May 2022 • Li Yang, Zhibin He, Changhe Li, Junwei Han, Dajiang Zhu, Tianming Liu, Tuo Zhang
The convolution on mesh considers the spatial organization of functional gradients and folding patterns on a cortical sheet and the newly designed channel attention block enhances the interpretability of the contribution of different functional gradients to cortical folding prediction.
no code implementations • 20 May 2022 • Yuzhong Chen, Yu Du, Zhenxiang Xiao, Lin Zhao, Lu Zhang, David Weizhong Liu, Dajiang Zhu, Tuo Zhang, Xintao Hu, Tianming Liu, Xi Jiang
The key characteristic of these ViT models is to adopt different aggregation strategies of spatial patch information within the artificial neural networks (ANNs).
no code implementations • 20 May 2022 • Yuzhong Chen, Zhenxiang Xiao, Lin Zhao, Lu Zhang, Haixing Dai, David Weizhong Liu, Zihao Wu, Changhe Li, Tuo Zhang, Changying Li, Dajiang Zhu, Tianming Liu, Xi Jiang
However, for data-intensive models such as vision transformer (ViT), current fine-tuning based FSL approaches are inefficient in knowledge generalization and thus degenerate the downstream task performances.
no code implementations • 15 Nov 2021 • Tuo Zhang, Lei Gao, Chaoyang He, Mi Zhang, Bhaskar Krishnamachari, Salman Avestimehr
In this paper, we will discuss the opportunities and challenges of FL in IoT platforms, as well as how it can enable diverse IoT applications.
no code implementations • 19 Oct 2021 • Sunwoo Lee, Tuo Zhang, Chaoyang He, Salman Avestimehr
In Federated Learning, a common approach for aggregating local models across clients is periodic averaging of the full model parameters.
1 code implementation • 15 Jun 2021 • Tuo Zhang, Chaoyang He, Tianhao Ma, Lei Gao, Mark Ma, Salman Avestimehr
In this paper, to further push forward this direction with a comprehensive study in both algorithm and system design, we build FedIoT platform that contains FedDetect algorithm for on-device anomaly data detection and a system design for realistic evaluation of federated learning on IoT devices.
no code implementations • NeurIPS 2010 • Kaiming Li, Lei Guo, Carlos Faraco, Dajiang Zhu, Fan Deng, Tuo Zhang, Xi Jiang, Degang Zhang, Hanbo Chen, Xintao Hu, Steve Miller, Tianming Liu
Our strategy is to formulate the individual ROI optimization as a group variance minimization problem, in which group-wise functional and structural connectivity patterns, and anatomic profiles are defined as optimization constraints.