no code implementations • 19 Jan 2022 • Joshua T. Vogelstein, Timothy Verstynen, Konrad P. Kording, Leyla Isik, John W. Krakauer, Ralph Etienne-Cummings, Elizabeth L. Ogburn, Carey E. Priebe, Randal Burns, Kwame Kutten, James J. Knierim, James B. Potash, Thomas Hartung, Lena Smirnova, Paul Worley, Alena Savonenko, Ian Phillips, Michael I. Miller, Rene Vidal, Jeremias Sulam, Adam Charles, Noah J. Cowan, Maxim Bichuch, Archana Venkataraman, Chen Li, Nitish Thakor, Justus M Kebschull, Marilyn Albert, Jinchong Xu, Marshall Hussain Shuler, Brian Caffo, Tilak Ratnanather, Ali Geisa, Seung-Eon Roh, Eva Yezerets, Meghana Madhyastha, Javier J. How, Tyler M. Tomita, Jayanta Dey, Ningyuan, Huang, Jong M. Shin, Kaleab Alemayehu Kinfu, Pratik Chaudhari, Ben Baker, Anna Schapiro, Dinesh Jayaraman, Eric Eaton, Michael Platt, Lyle Ungar, Leila Wehbe, Adam Kepecs, Amy Christensen, Onyema Osuagwu, Bing Brunton, Brett Mensh, Alysson R. Muotri, Gabriel Silva, Francesca Puppo, Florian Engert, Elizabeth Hillman, Julia Brown, Chris White, Weiwei Yang
We call this 'retrospective learning'.
no code implementations • 27 Jul 2020 • Tyler M. Tomita, Joshua T. Vogelstein
Many algorithms have been proposed for automated learning of suitable distances, most of which employ linear methods to learn a global metric over the feature space.
no code implementations • 25 Sep 2019 • Ronan Perry, Tyler M. Tomita, Jesse Patsolic, Benjamin Falk, Joshua Vogelstein
In particular, DFs dominate other methods in tabular data, that is, when the feature space is unstructured, so that the signal is invariant to permuting feature indices.
1 code implementation • 25 Sep 2019 • Ronan Perry, Adam Li, Chester Huynh, Tyler M. Tomita, Ronak Mehta, Jesus Arroyo, Jesse Patsolic, Benjamin Falk, Joshua T. Vogelstein
In particular, Forests dominate other methods in tabular data, that is, when the feature space is unstructured, so that the signal is invariant to a permutation of the feature indices.
2 code implementations • 10 Jun 2015 • Tyler M. Tomita, James Browne, Cencheng Shen, Jaewon Chung, Jesse L. Patsolic, Benjamin Falk, Jason Yim, Carey E. Priebe, Randal Burns, Mauro Maggioni, Joshua T. Vogelstein
Unfortunately, these extensions forfeit one or more of the favorable properties of decision forests based on axis-aligned splits, such as robustness to many noise dimensions, interpretability, or computational efficiency.