Search Results for author: Vajira Thambawita

Found 26 papers, 15 papers with code

Embryo 2.0: Merging Synthetic and Real Data for Advanced AI Predictions

1 code implementation2 Dec 2024 Oriana Presacan, Alexandru Dorobantiu, Vajira Thambawita, Michael A. Riegler, Mette H. Stensen, Mario Iliceto, Alexandru C. Aldea, Akriti Sharma

Our results demonstrate that incorporating synthetic images alongside real data improved classification performance, with the model achieving 97% accuracy compared to 95% when trained solely on real data.

Generative Adversarial Network

Comparative Analysis of Audio Feature Extraction for Real-Time Talking Portrait Synthesis

1 code implementation20 Nov 2024 Pegah Salehi, Sajad Amouei Sheshkal, Vajira Thambawita, Sushant Gautam, Saeed S. Sabet, Dag Johansen, Michael A. Riegler, Pål Halvorsen

This paper examines the integration of real-time talking-head generation for interviewer training, focusing on overcoming challenges in Audio Feature Extraction (AFE), which often introduces latency and limits responsiveness in real-time applications.

Talking Head Generation

Kvasir-VQA: A Text-Image Pair GI Tract Dataset

1 code implementation2 Sep 2024 Sushant Gautam, Andrea Storås, Cise Midoglu, Steven A. Hicks, Vajira Thambawita, Pål Halvorsen, Michael A. Riegler

We introduce Kvasir-VQA, an extended dataset derived from the HyperKvasir and Kvasir-Instrument datasets, augmented with question-and-answer annotations to facilitate advanced machine learning tasks in Gastrointestinal (GI) diagnostics.

Image Captioning Image Generation +7

Advancing sleep detection by modelling weak label sets: A novel weakly supervised learning approach

no code implementations27 Feb 2024 Matthias Boeker, Vajira Thambawita, Michael Riegler, Pål Halvorsen, Hugo L. Hammer

A \gls{lstm} trained on the soft cross-entropy outperformed conventional sleep detection algorithms, other neural network architectures and loss functions in accuracy and model calibration.

Weakly-supervised Learning

Mask-conditioned latent diffusion for generating gastrointestinal polyp images

no code implementations11 Apr 2023 Roman Macháček, Leila Mozaffari, Zahra Sepasdar, Sravanthi Parasa, Pål Halvorsen, Michael A. Riegler, Vajira Thambawita

Therefore, this study proposes a conditional DPM framework to generate synthetic GI polyp images conditioned on given generated segmentation masks.

Image Generation Image Segmentation +3

Biomedical image analysis competitions: The state of current participation practice

no code implementations16 Dec 2022 Matthias Eisenmann, Annika Reinke, Vivienn Weru, Minu Dietlinde Tizabi, Fabian Isensee, Tim J. Adler, Patrick Godau, Veronika Cheplygina, Michal Kozubek, Sharib Ali, Anubha Gupta, Jan Kybic, Alison Noble, Carlos Ortiz de Solórzano, Samiksha Pachade, Caroline Petitjean, Daniel Sage, Donglai Wei, Elizabeth Wilden, Deepak Alapatt, Vincent Andrearczyk, Ujjwal Baid, Spyridon Bakas, Niranjan Balu, Sophia Bano, Vivek Singh Bawa, Jorge Bernal, Sebastian Bodenstedt, Alessandro Casella, Jinwook Choi, Olivier Commowick, Marie Daum, Adrien Depeursinge, Reuben Dorent, Jan Egger, Hannah Eichhorn, Sandy Engelhardt, Melanie Ganz, Gabriel Girard, Lasse Hansen, Mattias Heinrich, Nicholas Heller, Alessa Hering, Arnaud Huaulmé, Hyunjeong Kim, Bennett Landman, Hongwei Bran Li, Jianning Li, Jun Ma, Anne Martel, Carlos Martín-Isla, Bjoern Menze, Chinedu Innocent Nwoye, Valentin Oreiller, Nicolas Padoy, Sarthak Pati, Kelly Payette, Carole Sudre, Kimberlin Van Wijnen, Armine Vardazaryan, Tom Vercauteren, Martin Wagner, Chuanbo Wang, Moi Hoon Yap, Zeyun Yu, Chun Yuan, Maximilian Zenk, Aneeq Zia, David Zimmerer, Rina Bao, Chanyeol Choi, Andrew Cohen, Oleh Dzyubachyk, Adrian Galdran, Tianyuan Gan, Tianqi Guo, Pradyumna Gupta, Mahmood Haithami, Edward Ho, Ikbeom Jang, Zhili Li, Zhengbo Luo, Filip Lux, Sokratis Makrogiannis, Dominik Müller, Young-tack Oh, Subeen Pang, Constantin Pape, Gorkem Polat, Charlotte Rosalie Reed, Kanghyun Ryu, Tim Scherr, Vajira Thambawita, Haoyu Wang, Xinliang Wang, Kele Xu, Hung Yeh, Doyeob Yeo, Yixuan Yuan, Yan Zeng, Xin Zhao, Julian Abbing, Jannes Adam, Nagesh Adluru, Niklas Agethen, Salman Ahmed, Yasmina Al Khalil, Mireia Alenyà, Esa Alhoniemi, Chengyang An, Talha Anwar, Tewodros Weldebirhan Arega, Netanell Avisdris, Dogu Baran Aydogan, Yingbin Bai, Maria Baldeon Calisto, Berke Doga Basaran, Marcel Beetz, Cheng Bian, Hao Bian, Kevin Blansit, Louise Bloch, Robert Bohnsack, Sara Bosticardo, Jack Breen, Mikael Brudfors, Raphael Brüngel, Mariano Cabezas, Alberto Cacciola, Zhiwei Chen, Yucong Chen, Daniel Tianming Chen, Minjeong Cho, Min-Kook Choi, Chuantao Xie Chuantao Xie, Dana Cobzas, Julien Cohen-Adad, Jorge Corral Acero, Sujit Kumar Das, Marcela de Oliveira, Hanqiu Deng, Guiming Dong, Lars Doorenbos, Cory Efird, Sergio Escalera, Di Fan, Mehdi Fatan Serj, Alexandre Fenneteau, Lucas Fidon, Patryk Filipiak, René Finzel, Nuno R. Freitas, Christoph M. Friedrich, Mitchell Fulton, Finn Gaida, Francesco Galati, Christoforos Galazis, Chang Hee Gan, Zheyao Gao, Shengbo Gao, Matej Gazda, Beerend Gerats, Neil Getty, Adam Gibicar, Ryan Gifford, Sajan Gohil, Maria Grammatikopoulou, Daniel Grzech, Orhun Güley, Timo Günnemann, Chunxu Guo, Sylvain Guy, Heonjin Ha, Luyi Han, Il Song Han, Ali Hatamizadeh, Tian He, Jimin Heo, Sebastian Hitziger, SeulGi Hong, Seungbum Hong, Rian Huang, Ziyan Huang, Markus Huellebrand, Stephan Huschauer, Mustaffa Hussain, Tomoo Inubushi, Ece Isik Polat, Mojtaba Jafaritadi, SeongHun Jeong, Bailiang Jian, Yuanhong Jiang, Zhifan Jiang, Yueming Jin, Smriti Joshi, Abdolrahim Kadkhodamohammadi, Reda Abdellah Kamraoui, Inha Kang, Junghwa Kang, Davood Karimi, April Khademi, Muhammad Irfan Khan, Suleiman A. Khan, Rishab Khantwal, Kwang-Ju Kim, Timothy Kline, Satoshi Kondo, Elina Kontio, Adrian Krenzer, Artem Kroviakov, Hugo Kuijf, Satyadwyoom Kumar, Francesco La Rosa, Abhi Lad, Doohee Lee, Minho Lee, Chiara Lena, Hao Li, Ling Li, Xingyu Li, Fuyuan Liao, Kuanlun Liao, Arlindo Limede Oliveira, Chaonan Lin, Shan Lin, Akis Linardos, Marius George Linguraru, Han Liu, Tao Liu, Di Liu, Yanling Liu, João Lourenço-Silva, Jingpei Lu, Jiangshan Lu, Imanol Luengo, Christina B. Lund, Huan Minh Luu, Yi Lv, Uzay Macar, Leon Maechler, Sina Mansour L., Kenji Marshall, Moona Mazher, Richard McKinley, Alfonso Medela, Felix Meissen, Mingyuan Meng, Dylan Miller, Seyed Hossein Mirjahanmardi, Arnab Mishra, Samir Mitha, Hassan Mohy-ud-Din, Tony Chi Wing Mok, Gowtham Krishnan Murugesan, Enamundram Naga Karthik, Sahil Nalawade, Jakub Nalepa, Mohamed Naser, Ramin Nateghi, Hammad Naveed, Quang-Minh Nguyen, Cuong Nguyen Quoc, Brennan Nichyporuk, Bruno Oliveira, David Owen, Jimut Bahan Pal, Junwen Pan, Wentao Pan, Winnie Pang, Bogyu Park, Vivek Pawar, Kamlesh Pawar, Michael Peven, Lena Philipp, Tomasz Pieciak, Szymon Plotka, Marcel Plutat, Fattaneh Pourakpour, Domen Preložnik, Kumaradevan Punithakumar, Abdul Qayyum, Sandro Queirós, Arman Rahmim, Salar Razavi, Jintao Ren, Mina Rezaei, Jonathan Adam Rico, ZunHyan Rieu, Markus Rink, Johannes Roth, Yusely Ruiz-Gonzalez, Numan Saeed, Anindo Saha, Mostafa Salem, Ricardo Sanchez-Matilla, Kurt Schilling, Wei Shao, Zhiqiang Shen, Ruize Shi, Pengcheng Shi, Daniel Sobotka, Théodore Soulier, Bella Specktor Fadida, Danail Stoyanov, Timothy Sum Hon Mun, Xiaowu Sun, Rong Tao, Franz Thaler, Antoine Théberge, Felix Thielke, Helena Torres, Kareem A. Wahid, Jiacheng Wang, Yifei Wang, Wei Wang, Xiong Wang, Jianhui Wen, Ning Wen, Marek Wodzinski, Ye Wu, Fangfang Xia, Tianqi Xiang, Chen Xiaofei, Lizhan Xu, Tingting Xue, Yuxuan Yang, Lin Yang, Kai Yao, Huifeng Yao, Amirsaeed Yazdani, Michael Yip, Hwanseung Yoo, Fereshteh Yousefirizi, Shunkai Yu, Lei Yu, Jonathan Zamora, Ramy Ashraf Zeineldin, Dewen Zeng, Jianpeng Zhang, Bokai Zhang, Jiapeng Zhang, Fan Zhang, Huahong Zhang, Zhongchen Zhao, Zixuan Zhao, Jiachen Zhao, Can Zhao, Qingshuo Zheng, Yuheng Zhi, Ziqi Zhou, Baosheng Zou, Klaus Maier-Hein, Paul F. Jäger, Annette Kopp-Schneider, Lena Maier-Hein

Of these, 84% were based on standard architectures.

Benchmarking Survey

VISEM-Tracking, a human spermatozoa tracking dataset

1 code implementation6 Dec 2022 Vajira Thambawita, Steven A. Hicks, Andrea M. Storås, Thu Nguyen, Jorunn M. Andersen, Oliwia Witczak, Trine B. Haugen, Hugo L. Hammer, Pål Halvorsen, Michael A. Riegler

A manual assessment of sperm motility requires microscopy observation, which is challenging due to the fast-moving spermatozoa in the field of view.

Segmentation Consistency Training: Out-of-Distribution Generalization for Medical Image Segmentation

1 code implementation30 May 2022 Birk Torpmann-Hagen, Vajira Thambawita, Kyrre Glette, Pål Halvorsen, Michael A. Riegler

Generalizability is seen as one of the major challenges in deep learning, in particular in the domain of medical imaging, where a change of hospital or in imaging routines can lead to a complete failure of a model.

Data Augmentation Image Segmentation +4

Grid HTM: Hierarchical Temporal Memory for Anomaly Detection in Videos

1 code implementation30 May 2022 Vladimir Monakhov, Vajira Thambawita, Pål Halvorsen, Michael A. Riegler

In this paper, we explore the capabilities of the Hierarchical Temporal Memory (HTM) algorithm to perform anomaly detection in videos, as it has favorable properties such as noise tolerance and online learning which combats concept drift.

Anomaly Detection Deep Learning +1

MedAI: Transparency in Medical Image Segmentation

1 code implementation Nordic Machine Intelligence 2021 Steven Hicks, Debesh Jha, Vajira Thambawita, Pål Halvorsen, Bjørn-Jostein Singstad, Sachin Gaur, Klas Pettersen, Morten Goodwin, Sravanthi Parasa, Thomas de Lange, Michael Riegler

MedAI: Transparency in Medical Image Segmentation is a challenge held for the first time at the Nordic AI Meet that focuses on medical image segmentation and transparency in machine learning (ML)-based systems.

Image Segmentation Medical Image Segmentation +2

SinGAN-Seg: Synthetic training data generation for medical image segmentation

4 code implementations29 Jun 2021 Vajira Thambawita, Pegah Salehi, Sajad Amouei Sheshkal, Steven A. Hicks, Hugo L. Hammer, Sravanthi Parasa, Thomas de Lange, Pål Halvorsen, Michael A. Riegler

The pipeline is evaluated using qualitative and quantitative comparisons between real and synthetic data to show that the style transfer technique used in our pipeline significantly improves the quality of the generated data and our method is better than other state-of-the-art GANs to prepare synthetic images when the size of training datasets are limited.

Image Segmentation Medical Image Segmentation +3

Meta-learning with implicit gradients in a few-shot setting for medical image segmentation

no code implementations6 Jun 2021 Rabindra Khadga, Debesh Jha, Steven Hicks, Vajira Thambawita, Michael A. Riegler, Sharib Ali, Pål Halvorsen

To our knowledge, this is the first work that exploits iMAML for medical image segmentation and explores the strength of the model on scenarios such as meta-training on unique and mixed instances of lesion datasets.

Few-Shot Learning Image Segmentation +3

Pyramid-Focus-Augmentation: Medical Image Segmentation with Step-Wise Focus

1 code implementation14 Dec 2020 Vajira Thambawita, Steven Hicks, Pål Halvorsen, Michael A. Riegler

Segmentation of findings in the gastrointestinal tract is a challenging but also an important task which is an important building stone for sufficient automatic decision support systems.

Image Segmentation Medical Image Segmentation +2

Real-Time Detection of Events in Soccer Videosusing 3D Convolutional Neural Networks

no code implementations2 Dec 2020 Olav A. Nergard Rongved, Steven A. Hicks, Vajira Thambawita, Hakon K. Stensland, Evi Zouganeli, Dag Johansen, Michael A. Riegler, Pal Halvorsen

The trade-off is a slightly lower precision compared to the current state-of-the-art, which has higher latency and performs better when a less accurate time estimation can be accepted.

Action Spotting

Extracting temporal features into a spatial domain using autoencoders for sperm video analysis

1 code implementation8 Nov 2019 Vajira Thambawita, Pål Halvorsen, Hugo Hammer, Michael Riegler, Trine B. Haugen

In this paper, we present a two-step deep learning method that is used to predict sperm motility and morphology-based on video recordings of human spermatozoa.

Deep Learning Transfer Learning

Stacked dense optical flows and dropout layers to predict sperm motility and morphology

no code implementations8 Nov 2019 Vajira Thambawita, Pål Halvorsen, Hugo Hammer, Michael Riegler, Trine B. Haugen

To solve this regression task of predicting motility and morphology, stacked dense optical flows and extracted original frames from sperm videos were used with the modified state of the art convolution neural networks.

regression

Cannot find the paper you are looking for? You can Submit a new open access paper.