no code implementations • 24 Feb 2025 • Boris Shirokikh, Anvar Kurmukov, Mariia Donskova, Valentin Samokhin, Mikhail Belyaev, Ivan Oseledets
Domain shift presents a significant challenge in applying Deep Learning to the segmentation of 3D medical images from sources like Magnetic Resonance Imaging (MRI) and Computed Tomography (CT).
1 code implementation • 16 Sep 2024 • Mikhail Goncharov, Valentin Samokhin, Eugenia Soboleva, Roman Sokolov, Boris Shirokikh, Mikhail Belyaev, Anvar Kurmukov, Ivan Oseledets
We train our APE model on 8400 publicly available CT images of abdomen and chest regions.
1 code implementation • 2 Aug 2024 • Farukh Yaushev, Daria Nogina, Valentin Samokhin, Mariya Dugova, Ekaterina Petrash, Dmitry Sevryukov, Mikhail Belyaev, Maxim Pisov
Understanding body part geometry is crucial for precise medical diagnostics.
no code implementations • 12 Jun 2024 • Anvar Kurmukov, Valeria Chernina, Regina Gareeva, Maria Dugova, Ekaterina Petrash, Olga Aleshina, Maxim Pisov, Boris Shirokikh, Valentin Samokhin, Vladislav Proskurov, Stanislav Shimovolos, Maria Basova, Mikhail Goncahrov, Eugenia Soboleva, Maria Donskova, Farukh Yaushev, Alexey Shevtsov, Alexey Zakharov, Talgat Saparov, Victor Gombolevskiy, Mikhail Belyaev
Previous studies have measured the time-saving effect of using a deep-learning-based aid (DLA) for CT interpretation.
no code implementations • 15 Jun 2021 • Aleksandr Beznosikov, Pavel Dvurechensky, Anastasia Koloskova, Valentin Samokhin, Sebastian U Stich, Alexander Gasnikov
We extend the stochastic extragradient method to this very general setting and theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone (when a Minty solution exists) settings.
no code implementations • 25 Oct 2020 • Aleksandr Beznosikov, Valentin Samokhin, Alexander Gasnikov
This paper focuses on the distributed optimization of stochastic saddle point problems.