Search Results for author: Valentina Salvatelli

Found 10 papers, 6 papers with code

MAIRA-Seg: Enhancing Radiology Report Generation with Segmentation-Aware Multimodal Large Language Models

no code implementations18 Nov 2024 Harshita Sharma, Valentina Salvatelli, Shaury Srivastav, Kenza Bouzid, Shruthi Bannur, Daniel C. Castro, Maximilian Ilse, Sam Bond-Taylor, Mercy Prasanna Ranjit, Fabian Falck, Fernando Pérez-García, Anton Schwaighofer, Hannah Richardson, Maria Teodora Wetscherek, Stephanie L. Hyland, Javier Alvarez-Valle

Subsequently, building on the architectures of MAIRA, a CXR-specialised model for report generation, we integrate a trainable segmentation tokens extractor that leverages these mask pseudolabels, and employ mask-aware prompting to generate draft radiology reports.

Segmentation Semantic Segmentation

RAD-DINO: Exploring Scalable Medical Image Encoders Beyond Text Supervision

no code implementations19 Jan 2024 Fernando Pérez-García, Harshita Sharma, Sam Bond-Taylor, Kenza Bouzid, Valentina Salvatelli, Maximilian Ilse, Shruthi Bannur, Daniel C. Castro, Anton Schwaighofer, Matthew P. Lungren, Maria Wetscherek, Noel Codella, Stephanie L. Hyland, Javier Alvarez-Valle, Ozan Oktay

We introduce RAD-DINO, a biomedical image encoder pre-trained solely on unimodal biomedical imaging data that obtains similar or greater performance than state-of-the-art biomedical language supervised models on a diverse range of benchmarks.

Semantic Segmentation

Exploring the Limits of Synthetic Creation of Solar EUV Images via Image-to-Image Translation

1 code implementation19 Aug 2022 Valentina Salvatelli, Luiz F. G. dos Santos, Souvik Bose, Brad Neuberg, Mark C. M. Cheung, Miho Janvier, Meng Jin, Yarin Gal, Atilim Gunes Baydin

The Solar Dynamics Observatory (SDO), a NASA multi-spectral decade-long mission that has been daily producing terabytes of observational data from the Sun, has been recently used as a use-case to demonstrate the potential of machine learning methodologies and to pave the way for future deep-space mission planning.

Decoder Image-to-Image Translation +2

Unsupervised Change Detection of Extreme Events Using ML On-Board

1 code implementation4 Nov 2021 Vít Růžička, Anna Vaughan, Daniele De Martini, James Fulton, Valentina Salvatelli, Chris Bridges, Gonzalo Mateo-Garcia, Valentina Zantedeschi

In this paper, we introduce RaVAEn, a lightweight, unsupervised approach for change detection in satellite data based on Variational Auto-Encoders (VAEs) with the specific purpose of on-board deployment.

Change Detection Management +2

Multi-Channel Auto-Calibration for the Atmospheric Imaging Assembly using Machine Learning

1 code implementation27 Dec 2020 Luiz F. G. dos Santos, Souvik Bose, Valentina Salvatelli, Brad Neuberg, Mark C. M. Cheung, Miho Janvier, Meng Jin, Yarin Gal, Paul Boerner, Atılım Güneş Baydin

Our approach establishes the framework for a novel technique to calibrate EUV instruments and advance our understanding of the cross-channel relation between different EUV channels.

BIG-bench Machine Learning Camera Calibration

Using U-Nets to Create High-Fidelity Virtual Observations of the Solar Corona

1 code implementation10 Nov 2019 Valentina Salvatelli, Souvik Bose, Brad Neuberg, Luiz F. G. dos Santos, Mark Cheung, Miho Janvier, Atilim Gunes Baydin, Yarin Gal, Meng Jin

The synergy between machine learning and this enormous amount of data has the potential, still largely unexploited, to advance our understanding of the Sun and extend the capabilities of heliophysics missions.

Decoder Image-to-Image Translation +2

Auto-Calibration of Remote Sensing Solar Telescopes with Deep Learning

2 code implementations10 Nov 2019 Brad Neuberg, Souvik Bose, Valentina Salvatelli, Luiz F. G. dos Santos, Mark Cheung, Miho Janvier, Atilim Gunes Baydin, Yarin Gal, Meng Jin

As a part of NASA's Heliophysics System Observatory (HSO) fleet of satellites, the Solar Dynamics Observatory (SDO) has continuously monitored the Sun since2010.

Deep Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.