no code implementations • 16 Jan 2022 • Seyed A. Esmaeili, Sharmila Duppala, Vedant Nanda, Aravind Srinivasan, John P. Dickerson
In the most general form, the platform consists of three entities: two sides to be matched and a platform operator that decides the matching.
no code implementations • 29 Nov 2021 • Vedant Nanda, Ayan Majumdar, Camila Kolling, John P. Dickerson, Krishna P. Gummadi, Bradley C. Love, Adrian Weller
We argue that a valuable perspective on when a model learns \textit{good} representations is that inputs that are mapped to similar representations by the model should be perceived similarly by humans.
no code implementations • 12 Feb 2021 • Valeriia Cherepanova, Vedant Nanda, Micah Goldblum, John P. Dickerson, Tom Goldstein
As machine learning algorithms have been widely deployed across applications, many concerns have been raised over the fairness of their predictions, especially in high stakes settings (such as facial recognition and medical imaging).
no code implementations • 1 Jul 2020 • Vedant Nanda, Till Speicher, John P. Dickerson, Krishna P. Gummadi, Muhammad Bilal Zafar
Our framework defines a large number of concepts that the DNN explanations could be based on and performs the explanation-conformity check at test time to assess prediction robustness.
1 code implementation • 17 Jun 2020 • Vedant Nanda, Samuel Dooley, Sahil Singla, Soheil Feizi, John P. Dickerson
In this paper, we argue that traditional notions of fairness that are only based on models' outputs are not sufficient when the model is vulnerable to adversarial attacks.
1 code implementation • 18 Dec 2019 • Vedant Nanda, Pan Xu, Karthik Abinav Sankararaman, John P. Dickerson, Aravind Srinivasan
Moreover, if in such a scenario, the assignment of requests to drivers (by the platform) is made only to maximize profit and/or minimize wait time for riders, requests of a certain type (e. g. from a non-popular pickup location, or to a non-popular drop-off location) might never be assigned to a driver.
1 code implementation • 4 Mar 2019 • Hoda Heidari, Vedant Nanda, Krishna P. Gummadi
Most existing notions of algorithmic fairness are one-shot: they ensure some form of allocative equality at the time of decision making, but do not account for the adverse impact of the algorithmic decisions today on the long-term welfare and prosperity of certain segments of the population.