no code implementations • EMNLP 2020 • Md Mosharaf Hossain, Venelin Kovatchev, Pranoy Dutta, Tiffany Kao, Elizabeth Wei, Eduardo Blanco
Negation is underrepresented in existing natural language inference benchmarks.
no code implementations • NAACL (DADC) 2022 • Venelin Kovatchev, Trina Chatterjee, Venkata S Govindarajan, Jifan Chen, Eunsol Choi, Gabriella Chronis, Anubrata Das, Katrin Erk, Matthew Lease, Junyi Jessy Li, Yating Wu, Kyle Mahowald
Developing methods to adversarially challenge NLP systems is a promising avenue for improving both model performance and interpretability.
no code implementations • 8 Jan 2023 • Anubrata Das, Houjiang Liu, Venelin Kovatchev, Matthew Lease
We recommend that future research include collaboration with fact-checker stakeholders early on in NLP research, as well as incorporation of human-centered design practices in model development, in order to further guide technology development for human use and practical adoption.
1 code implementation • COLING 2022 • Venelin Kovatchev, Mariona Taulé
Specifically, we focus on measuring and improving the performance of machine learning systems on negation-based adversarial examples and their ability to generalize across out-of-distribution topics.
no code implementations • 10 Aug 2022 • Venelin Kovatchev
This dissertation explores the linguistic and computational aspects of the meaning relations that can hold between two or more complex linguistic expressions (phrases, clauses, sentences, paragraphs).
no code implementations • 29 Jun 2022 • Venelin Kovatchev, Trina Chatterjee, Venkata S Govindarajan, Jifan Chen, Eunsol Choi, Gabriella Chronis, Anubrata Das, Katrin Erk, Matthew Lease, Junyi Jessy Li, Yating Wu, Kyle Mahowald
Developing methods to adversarially challenge NLP systems is a promising avenue for improving both model performance and interpretability.
no code implementations • 15 Apr 2022 • Venelin Kovatchev, Soumyajit Gupta, Anubrata Das, Matthew Lease
In this work, we first introduce a differentiable measure that enables direct optimization of group fairness (specifically, balancing accuracy across groups) in model training.
1 code implementation • ACL 2022 • Anubrata Das, Chitrank Gupta, Venelin Kovatchev, Matthew Lease, Junyi Jessy Li
We present ProtoTEx, a novel white-box NLP classification architecture based on prototype networks.
2 code implementations • 6 Dec 2021 • Kaustubh D. Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abinaya Mahendiran, Simon Mille, Ashish Shrivastava, Samson Tan, Tongshuang Wu, Jascha Sohl-Dickstein, Jinho D. Choi, Eduard Hovy, Ondrej Dusek, Sebastian Ruder, Sajant Anand, Nagender Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Connor Boyle, Caroline Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile Chapuis, Wanxiang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cornell, Gautier Dagan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra Dubey, Tatiana Ekeinhor, Marco Di Giovanni, Tanya Goyal, Rishabh Gupta, Louanes Hamla, Sang Han, Fabrice Harel-Canada, Antoine Honore, Ishan Jindal, Przemyslaw K. Joniak, Denis Kleyko, Venelin Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan Lee, Corey James Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko, Vukosi Marivate, Gerard de Melo, Simon Meoni, Maxime Meyer, Afnan Mir, Nafise Sadat Moosavi, Niklas Muennighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria Obedkova, Priti Oli, Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicolas Roberts, Juan Diego Rodriguez, Claude Roux, Vasconcellos P. H. S., Ananya B. Sai, Robin M. Schmidt, Thomas Scialom, Tshephisho Sefara, Saqib N. Shamsi, Xudong Shen, Haoyue Shi, Yiwen Shi, Anna Shvets, Nick Siegel, Damien Sileo, Jamie Simon, Chandan Singh, Roman Sitelew, Priyank Soni, Taylor Sorensen, William Soto, Aman Srivastava, KV Aditya Srivatsa, Tony Sun, Mukund Varma T, A Tabassum, Fiona Anting Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn, Athena Wang, Zijian Wang, Gloria Wang, Zijie J. Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata, Xinyi Wu, Witold Wydmański, Tianbao Xie, Usama Yaseen, Michael A. Yee, Jing Zhang, Yue Zhang
Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on.
no code implementations • ACL 2021 • Venelin Kovatchev, Phillip Smith, Mark Lee, Rory Devine
To determine the capabilities of automatic systems to generalize to unseen data, we create UK-MIND-20 - a new corpus of children's performance on tests of mindreading, consisting of 10, 320 question-answer pairs.
no code implementations • COLING 2020 • Venelin Kovatchev, Phillip Smith, Mark Lee, Imogen Grumley Traynor, Irene Luque Aguilera, Rory Devine
In this paper we present the first work on the automated scoring of mindreading ability in middle childhood and early adolescence.
1 code implementation • 16 Nov 2020 • Venelin Kovatchev, Phillip Smith, Mark Lee, Imogen Grumley Traynor, Irene Luque Aguilera, Rory T. Devine
In this paper we present the first work on the automated scoring of mindreading ability in middle childhood and early adolescence.
no code implementations • LREC 2020 • Venelin Kovatchev, Darina Gold, M. Antonia Marti, Maria Salamo, Torsten Zesch
We use the typology to annotate a corpus of 520 sentence pairs in English and we demonstrate that unlike previous typologies, SHARel can be applied to all relations of interest with a high inter-annotator agreement.
no code implementations • RANLP 2019 • Venelin Kovatchev, M. Antonia Marti, Maria Salamo, Javier Beltran
In this paper, we present a new approach for the evaluation, error analysis, and interpretation of supervised and unsupervised Paraphrase Identification (PI) systems.
1 code implementation • WS 2019 • Darina Gold, Venelin Kovatchev, Torsten Zesch
Here we present a corpus annotated with these relations and the analysis of these results.
1 code implementation • COLING 2018 • Venelin Kovatchev, M. Ant{\`o}nia Mart{\'\i}, Maria Salam{\'o}
We present WARP-Text, an open-source web-based tool for annotating relationships between pairs of texts.