no code implementations • 28 Jun 2022 • Zee Fryer, Vera Axelrod, Ben Packer, Alex Beutel, Jilin Chen, Kellie Webster
A common approach for testing fairness issues in text-based classifiers is through the use of counterfactuals: does the classifier output change if a sensitive attribute in the input is changed?
no code implementations • 25 May 2022 • Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara Rivera, Ankur Bapna
We introduce FLEURS, the Few-shot Learning Evaluation of Universal Representations of Speech benchmark.
no code implementations • 9 May 2022 • Ankur Bapna, Isaac Caswell, Julia Kreutzer, Orhan Firat, Daan van Esch, Aditya Siddhant, Mengmeng Niu, Pallavi Baljekar, Xavier Garcia, Wolfgang Macherey, Theresa Breiner, Vera Axelrod, Jason Riesa, Yuan Cao, Mia Xu Chen, Klaus Macherey, Maxim Krikun, Pidong Wang, Alexander Gutkin, Apurva Shah, Yanping Huang, Zhifeng Chen, Yonghui Wu, Macduff Hughes
In this paper we share findings from our effort to build practical machine translation (MT) systems capable of translating across over one thousand languages.
no code implementations • 21 Mar 2022 • Alexis Conneau, Ankur Bapna, Yu Zhang, Min Ma, Patrick von Platen, Anton Lozhkov, Colin Cherry, Ye Jia, Clara Rivera, Mihir Kale, Daan van Esch, Vera Axelrod, Simran Khanuja, Jonathan H. Clark, Orhan Firat, Michael Auli, Sebastian Ruder, Jason Riesa, Melvin Johnson
Covering 102 languages from 10+ language families, 3 different domains and 4 task families, XTREME-S aims to simplify multilingual speech representation evaluation, as well as catalyze research in "universal" speech representation learning.
4 code implementations • TACL 2018 • Kellie Webster, Marta Recasens, Vera Axelrod, Jason Baldridge
Coreference resolution is an important task for natural language understanding, and the resolution of ambiguous pronouns a longstanding challenge.