Search Results for author: Veronika Cheplygina

Found 45 papers, 19 papers with code

Dataset Distribution Impacts Model Fairness: Single vs. Multi-Task Learning

no code implementations24 Jul 2024 Ralf Raumanns, Gerard Schouten, Josien P. W. Pluim, Veronika Cheplygina

We evaluate the performance of skin lesion classification using ResNet-based CNNs, focusing on patient sex variations in training data and three different learning strategies.

Fairness Lesion Classification +2

Exploring connections of spectral analysis and transfer learning in medical imaging

no code implementations16 Jul 2024 Yucheng Lu, Dovile Juodelyte, Jonathan D. Victor, Veronika Cheplygina

In this paper, we use spectral analysis to investigate transfer learning and study model sensitivity to frequency shortcuts in medical imaging.

Transfer Learning

Augmenting Chest X-ray Datasets with Non-Expert Annotations

1 code implementation5 Sep 2023 Cathrine Damgaard, Trine Naja Eriksen, Dovile Juodelyte, Veronika Cheplygina, Amelia Jiménez-Sánchez

We train a chest drain detector with the non-expert annotations that generalizes well to expert labels.

Why is the winner the best?

no code implementations CVPR 2023 Matthias Eisenmann, Annika Reinke, Vivienn Weru, Minu Dietlinde Tizabi, Fabian Isensee, Tim J. Adler, Sharib Ali, Vincent Andrearczyk, Marc Aubreville, Ujjwal Baid, Spyridon Bakas, Niranjan Balu, Sophia Bano, Jorge Bernal, Sebastian Bodenstedt, Alessandro Casella, Veronika Cheplygina, Marie Daum, Marleen de Bruijne, Adrien Depeursinge, Reuben Dorent, Jan Egger, David G. Ellis, Sandy Engelhardt, Melanie Ganz, Noha Ghatwary, Gabriel Girard, Patrick Godau, Anubha Gupta, Lasse Hansen, Kanako Harada, Mattias Heinrich, Nicholas Heller, Alessa Hering, Arnaud Huaulmé, Pierre Jannin, Ali Emre Kavur, Oldřich Kodym, Michal Kozubek, Jianning Li, Hongwei Li, Jun Ma, Carlos Martín-Isla, Bjoern Menze, Alison Noble, Valentin Oreiller, Nicolas Padoy, Sarthak Pati, Kelly Payette, Tim Rädsch, Jonathan Rafael-Patiño, Vivek Singh Bawa, Stefanie Speidel, Carole H. Sudre, Kimberlin Van Wijnen, Martin Wagner, Donglai Wei, Amine Yamlahi, Moi Hoon Yap, Chun Yuan, Maximilian Zenk, Aneeq Zia, David Zimmerer, Dogu Baran Aydogan, Binod Bhattarai, Louise Bloch, Raphael Brüngel, Jihoon Cho, Chanyeol Choi, Qi Dou, Ivan Ezhov, Christoph M. Friedrich, Clifton Fuller, Rebati Raman Gaire, Adrian Galdran, Álvaro García Faura, Maria Grammatikopoulou, SeulGi Hong, Mostafa Jahanifar, Ikbeom Jang, Abdolrahim Kadkhodamohammadi, Inha Kang, Florian Kofler, Satoshi Kondo, Hugo Kuijf, Mingxing Li, Minh Huan Luu, Tomaž Martinčič, Pedro Morais, Mohamed A. Naser, Bruno Oliveira, David Owen, Subeen Pang, Jinah Park, Sung-Hong Park, Szymon Płotka, Elodie Puybareau, Nasir Rajpoot, Kanghyun Ryu, Numan Saeed, Adam Shephard, Pengcheng Shi, Dejan Štepec, Ronast Subedi, Guillaume Tochon, Helena R. Torres, Helene Urien, João L. Vilaça, Kareem Abdul Wahid, Haojie Wang, Jiacheng Wang, Liansheng Wang, Xiyue Wang, Benedikt Wiestler, Marek Wodzinski, Fangfang Xia, Juanying Xie, Zhiwei Xiong, Sen yang, Yanwu Yang, Zixuan Zhao, Klaus Maier-Hein, Paul F. Jäger, Annette Kopp-Schneider, Lena Maier-Hein

The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning.

Benchmarking Multi-Task Learning

Revisiting Hidden Representations in Transfer Learning for Medical Imaging

1 code implementation16 Feb 2023 Dovile Juodelyte, Amelia Jiménez-Sánchez, Veronika Cheplygina

Our findings show that the similarity between networks before and after fine-tuning does not correlate with performance gains, suggesting that the advantages of transfer learning might not solely originate from the reuse of features in the early layers of a convolutional neural network.

Transfer Learning

Understanding metric-related pitfalls in image analysis validation

no code implementations3 Feb 2023 Annika Reinke, Minu D. Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Carole H. Sudre, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, Florian Buettner, M. Jorge Cardoso, Veronika Cheplygina, Jianxu Chen, Evangelia Christodoulou, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Jens Kleesiek, Florian Kofler, Thijs Kooi, Annette Kopp-Schneider, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Michael A. Riegler, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul F. Jäger, Lena Maier-Hein

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice.

Biomedical image analysis competitions: The state of current participation practice

no code implementations16 Dec 2022 Matthias Eisenmann, Annika Reinke, Vivienn Weru, Minu Dietlinde Tizabi, Fabian Isensee, Tim J. Adler, Patrick Godau, Veronika Cheplygina, Michal Kozubek, Sharib Ali, Anubha Gupta, Jan Kybic, Alison Noble, Carlos Ortiz de Solórzano, Samiksha Pachade, Caroline Petitjean, Daniel Sage, Donglai Wei, Elizabeth Wilden, Deepak Alapatt, Vincent Andrearczyk, Ujjwal Baid, Spyridon Bakas, Niranjan Balu, Sophia Bano, Vivek Singh Bawa, Jorge Bernal, Sebastian Bodenstedt, Alessandro Casella, Jinwook Choi, Olivier Commowick, Marie Daum, Adrien Depeursinge, Reuben Dorent, Jan Egger, Hannah Eichhorn, Sandy Engelhardt, Melanie Ganz, Gabriel Girard, Lasse Hansen, Mattias Heinrich, Nicholas Heller, Alessa Hering, Arnaud Huaulmé, Hyunjeong Kim, Bennett Landman, Hongwei Bran Li, Jianning Li, Jun Ma, Anne Martel, Carlos Martín-Isla, Bjoern Menze, Chinedu Innocent Nwoye, Valentin Oreiller, Nicolas Padoy, Sarthak Pati, Kelly Payette, Carole Sudre, Kimberlin Van Wijnen, Armine Vardazaryan, Tom Vercauteren, Martin Wagner, Chuanbo Wang, Moi Hoon Yap, Zeyun Yu, Chun Yuan, Maximilian Zenk, Aneeq Zia, David Zimmerer, Rina Bao, Chanyeol Choi, Andrew Cohen, Oleh Dzyubachyk, Adrian Galdran, Tianyuan Gan, Tianqi Guo, Pradyumna Gupta, Mahmood Haithami, Edward Ho, Ikbeom Jang, Zhili Li, Zhengbo Luo, Filip Lux, Sokratis Makrogiannis, Dominik Müller, Young-tack Oh, Subeen Pang, Constantin Pape, Gorkem Polat, Charlotte Rosalie Reed, Kanghyun Ryu, Tim Scherr, Vajira Thambawita, Haoyu Wang, Xinliang Wang, Kele Xu, Hung Yeh, Doyeob Yeo, Yixuan Yuan, Yan Zeng, Xin Zhao, Julian Abbing, Jannes Adam, Nagesh Adluru, Niklas Agethen, Salman Ahmed, Yasmina Al Khalil, Mireia Alenyà, Esa Alhoniemi, Chengyang An, Talha Anwar, Tewodros Weldebirhan Arega, Netanell Avisdris, Dogu Baran Aydogan, Yingbin Bai, Maria Baldeon Calisto, Berke Doga Basaran, Marcel Beetz, Cheng Bian, Hao Bian, Kevin Blansit, Louise Bloch, Robert Bohnsack, Sara Bosticardo, Jack Breen, Mikael Brudfors, Raphael Brüngel, Mariano Cabezas, Alberto Cacciola, Zhiwei Chen, Yucong Chen, Daniel Tianming Chen, Minjeong Cho, Min-Kook Choi, Chuantao Xie Chuantao Xie, Dana Cobzas, Julien Cohen-Adad, Jorge Corral Acero, Sujit Kumar Das, Marcela de Oliveira, Hanqiu Deng, Guiming Dong, Lars Doorenbos, Cory Efird, Sergio Escalera, Di Fan, Mehdi Fatan Serj, Alexandre Fenneteau, Lucas Fidon, Patryk Filipiak, René Finzel, Nuno R. Freitas, Christoph M. Friedrich, Mitchell Fulton, Finn Gaida, Francesco Galati, Christoforos Galazis, Chang Hee Gan, Zheyao Gao, Shengbo Gao, Matej Gazda, Beerend Gerats, Neil Getty, Adam Gibicar, Ryan Gifford, Sajan Gohil, Maria Grammatikopoulou, Daniel Grzech, Orhun Güley, Timo Günnemann, Chunxu Guo, Sylvain Guy, Heonjin Ha, Luyi Han, Il Song Han, Ali Hatamizadeh, Tian He, Jimin Heo, Sebastian Hitziger, SeulGi Hong, Seungbum Hong, Rian Huang, Ziyan Huang, Markus Huellebrand, Stephan Huschauer, Mustaffa Hussain, Tomoo Inubushi, Ece Isik Polat, Mojtaba Jafaritadi, SeongHun Jeong, Bailiang Jian, Yuanhong Jiang, Zhifan Jiang, Yueming Jin, Smriti Joshi, Abdolrahim Kadkhodamohammadi, Reda Abdellah Kamraoui, Inha Kang, Junghwa Kang, Davood Karimi, April Khademi, Muhammad Irfan Khan, Suleiman A. Khan, Rishab Khantwal, Kwang-Ju Kim, Timothy Kline, Satoshi Kondo, Elina Kontio, Adrian Krenzer, Artem Kroviakov, Hugo Kuijf, Satyadwyoom Kumar, Francesco La Rosa, Abhi Lad, Doohee Lee, Minho Lee, Chiara Lena, Hao Li, Ling Li, Xingyu Li, Fuyuan Liao, Kuanlun Liao, Arlindo Limede Oliveira, Chaonan Lin, Shan Lin, Akis Linardos, Marius George Linguraru, Han Liu, Tao Liu, Di Liu, Yanling Liu, João Lourenço-Silva, Jingpei Lu, Jiangshan Lu, Imanol Luengo, Christina B. Lund, Huan Minh Luu, Yi Lv, Uzay Macar, Leon Maechler, Sina Mansour L., Kenji Marshall, Moona Mazher, Richard McKinley, Alfonso Medela, Felix Meissen, Mingyuan Meng, Dylan Miller, Seyed Hossein Mirjahanmardi, Arnab Mishra, Samir Mitha, Hassan Mohy-ud-Din, Tony Chi Wing Mok, Gowtham Krishnan Murugesan, Enamundram Naga Karthik, Sahil Nalawade, Jakub Nalepa, Mohamed Naser, Ramin Nateghi, Hammad Naveed, Quang-Minh Nguyen, Cuong Nguyen Quoc, Brennan Nichyporuk, Bruno Oliveira, David Owen, Jimut Bahan Pal, Junwen Pan, Wentao Pan, Winnie Pang, Bogyu Park, Vivek Pawar, Kamlesh Pawar, Michael Peven, Lena Philipp, Tomasz Pieciak, Szymon Plotka, Marcel Plutat, Fattaneh Pourakpour, Domen Preložnik, Kumaradevan Punithakumar, Abdul Qayyum, Sandro Queirós, Arman Rahmim, Salar Razavi, Jintao Ren, Mina Rezaei, Jonathan Adam Rico, ZunHyan Rieu, Markus Rink, Johannes Roth, Yusely Ruiz-Gonzalez, Numan Saeed, Anindo Saha, Mostafa Salem, Ricardo Sanchez-Matilla, Kurt Schilling, Wei Shao, Zhiqiang Shen, Ruize Shi, Pengcheng Shi, Daniel Sobotka, Théodore Soulier, Bella Specktor Fadida, Danail Stoyanov, Timothy Sum Hon Mun, Xiaowu Sun, Rong Tao, Franz Thaler, Antoine Théberge, Felix Thielke, Helena Torres, Kareem A. Wahid, Jiacheng Wang, Yifei Wang, Wei Wang, Xiong Wang, Jianhui Wen, Ning Wen, Marek Wodzinski, Ye Wu, Fangfang Xia, Tianqi Xiang, Chen Xiaofei, Lizhan Xu, Tingting Xue, Yuxuan Yang, Lin Yang, Kai Yao, Huifeng Yao, Amirsaeed Yazdani, Michael Yip, Hwanseung Yoo, Fereshteh Yousefirizi, Shunkai Yu, Lei Yu, Jonathan Zamora, Ramy Ashraf Zeineldin, Dewen Zeng, Jianpeng Zhang, Bokai Zhang, Jiapeng Zhang, Fan Zhang, Huahong Zhang, Zhongchen Zhao, Zixuan Zhao, Jiachen Zhao, Can Zhao, Qingshuo Zheng, Yuheng Zhi, Ziqi Zhou, Baosheng Zou, Klaus Maier-Hein, Paul F. Jäger, Annette Kopp-Schneider, Lena Maier-Hein

Of these, 84% were based on standard architectures.

Benchmarking

Detecting Shortcuts in Medical Images -- A Case Study in Chest X-rays

1 code implementation8 Nov 2022 Amelia Jiménez-Sánchez, Dovile Juodelyte, Bethany Chamberlain, Veronika Cheplygina

The availability of large public datasets and the increased amount of computing power have shifted the interest of the medical community to high-performance algorithms.

Image Classification Medical Image Classification

Metrics reloaded: Recommendations for image analysis validation

1 code implementation3 Jun 2022 Lena Maier-Hein, Annika Reinke, Patrick Godau, Minu D. Tizabi, Florian Buettner, Evangelia Christodoulou, Ben Glocker, Fabian Isensee, Jens Kleesiek, Michal Kozubek, Mauricio Reyes, Michael A. Riegler, Manuel Wiesenfarth, A. Emre Kavur, Carole H. Sudre, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, Tim Rädsch, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, M. Jorge Cardoso, Veronika Cheplygina, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Florian Kofler, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Nasir Rajpoot, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Paul F. Jäger

The framework was developed in a multi-stage Delphi process and is based on the novel concept of a problem fingerprint - a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), data set and algorithm output.

Instance Segmentation object-detection +2

Predicting Bearings' Degradation Stages for Predictive Maintenance in the Pharmaceutical Industry

1 code implementation7 Mar 2022 Dovile Juodelyte, Veronika Cheplygina, Therese Graversen, Philippe Bonnet

In the pharmaceutical industry, the maintenance of production machines must be audited by the regulator.

Effect of Prior-based Losses on Segmentation Performance: A Benchmark

1 code implementation7 Jan 2022 Rosana El Jurdi, Caroline Petitjean, Veronika Cheplygina, Paul Honeine, Fahed Abdallah

To enforce anatomical plausibility, recent research studies have focused on incorporating prior knowledge such as object shape or boundary, as constraints in the loss function.

Image Segmentation Medical Image Segmentation +2

ENHANCE (ENriching Health data by ANnotations of Crowd and Experts): A case study for skin lesion classification

1 code implementation27 Jul 2021 Ralf Raumanns, Gerard Schouten, Max Joosten, Josien P. W. Pluim, Veronika Cheplygina

In this paper we first analyse the correlations between the annotations and the diagnostic label of the lesion, as well as study the agreement between different annotation sources.

Lesion Classification Multi-Task Learning +1

Cats, not CAT scans: a study of dataset similarity in transfer learning for 2D medical image classification

1 code implementation13 Jul 2021 Irma van den Brandt, Floris Fok, Bas Mulders, Joaquin Vanschoren, Veronika Cheplygina

There is currently no consensus on how to choose appropriate source data, and in the literature we can find both evidence of favoring large natural image datasets such as ImageNet, and evidence of favoring more specialized medical datasets.

Image Classification Medical Image Classification +1

Common Limitations of Image Processing Metrics: A Picture Story

1 code implementation12 Apr 2021 Annika Reinke, Minu D. Tizabi, Carole H. Sudre, Matthias Eisenmann, Tim Rädsch, Michael Baumgartner, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, Matthew Blaschko, Florian Buettner, M. Jorge Cardoso, Jianxu Chen, Veronika Cheplygina, Evangelia Christodoulou, Beth Cimini, Gary S. Collins, Sandy Engelhardt, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Fred Hamprecht, Daniel A. Hashimoto, Doreen Heckmann-Nötzel, Peter Hirsch, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, A. Emre Kavur, Hannes Kenngott, Jens Kleesiek, Andreas Kleppe, Sven Kohler, Florian Kofler, Annette Kopp-Schneider, Thijs Kooi, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, M. Alican Noyan, Jens Petersen, Gorkem Polat, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Nicola Rieke, Michael Riegler, Hassan Rivaz, Julio Saez-Rodriguez, Clara I. Sánchez, Julien Schroeter, Anindo Saha, M. Alper Selver, Lalith Sharan, Shravya Shetty, Maarten van Smeden, Bram Stieltjes, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul Jäger, Lena Maier-Hein

While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation.

Instance Segmentation object-detection +2

How I failed machine learning in medical imaging -- shortcomings and recommendations

1 code implementation18 Mar 2021 Gaël Varoquaux, Veronika Cheplygina

Finally we provide a broad range of recommendations on how to further these address problems in the future.

BIG-bench Machine Learning

Using uncertainty estimation to reduce false positives in liver lesion detection

no code implementations12 Jan 2021 Ishaan Bhat, Hugo J. Kuijf, Veronika Cheplygina, Josien P. W. Pluim

We find that the use of a dropout rate of 0. 5 produces the least number of false positives in the neural network predictions and the trained classifier filters out approximately 90% of these false positives detections in the test-set.

Lesion Detection

Crowdsourcing Airway Annotations in Chest Computed Tomography Images

1 code implementation20 Nov 2020 Veronika Cheplygina, Adria Perez-Rovira, Wieying Kuo, Harm A. W. M. Tiddens, Marleen de Bruijne

We generate image slices at known locations of airways in 24 subjects and request the crowd workers to outline the airway lumen and airway wall.

Computed Tomography (CT)

High-level Prior-based Loss Functions for Medical Image Segmentation: A Survey

no code implementations16 Nov 2020 Rosana El Jurdi, Caroline Petitjean, Paul Honeine, Veronika Cheplygina, Fahed Abdallah

Today, deep convolutional neural networks (CNNs) have demonstrated state of the art performance for supervised medical image segmentation, across various imaging modalities and tasks.

Image Segmentation Medical Image Segmentation +2

Risk of Training Diagnostic Algorithms on Data with Demographic Bias

no code implementations20 May 2020 Samaneh Abbasi-Sureshjani, Ralf Raumanns, Britt E. J. Michels, Gerard Schouten, Veronika Cheplygina

Surprisingly, we found that papers focusing on diagnosis rarely describe the demographics of the datasets used, and the diagnosis is purely based on images.

Predicting Scores of Medical Imaging Segmentation Methods with Meta-Learning

no code implementations8 May 2020 Tom van Sonsbeek, Veronika Cheplygina

Deep learning has led to state-of-the-art results for many medical imaging tasks, such as segmentation of different anatomical structures.

Medical Image Segmentation Meta-Learning +1

A Survey of Crowdsourcing in Medical Image Analysis

no code implementations25 Feb 2019 Silas Ørting, Andrew Doyle, Arno van Hilten, Matthias Hirth, Oana Inel, Christopher R. Madan, Panagiotis Mavridis, Helen Spiers, Veronika Cheplygina

Despite the growing popularity of this approach, there has not yet been a comprehensive literature review to provide guidance to researchers considering using crowdsourcing methodologies in their own medical imaging analysis.

Characterizing multiple instance datasets

no code implementations21 Jun 2018 Veronika Cheplygina, David M. J. Tax

When performing a comparison of different MIL classifiers, it is important to understand the differences of the datasets, used in the comparison.

Multiple Instance Learning

Crowd disagreement about medical images is informative

no code implementations21 Jun 2018 Veronika Cheplygina, Josien P. W. Pluim

Classifiers for medical image analysis are often trained with a single consensus label, based on combining labels given by experts or crowds.

Feature learning based on visual similarity triplets in medical image analysis: A case study of emphysema in chest CT scans

no code implementations19 Jun 2018 Silas Nyboe Ørting, Jens Petersen, Veronika Cheplygina, Laura H. Thomsen, Mathilde M. W. Wille, Marleen de Bruijne

We evaluate the networks on 973 images, and show that the CNNs can learn disease relevant feature representations from derived similarity triplets.

Early Experiences with Crowdsourcing Airway Annotations in Chest CT

no code implementations7 Jun 2017 Veronika Cheplygina, Adria Perez-Rovira, Wieying Kuo, Harm A. W. M. Tiddens, Marleen de Bruijne

Measuring airways in chest computed tomography (CT) images is important for characterizing diseases such as cystic fibrosis, yet very time-consuming to perform manually.

Computed Tomography (CT)

Automatic Emphysema Detection using Weakly Labeled HRCT Lung Images

no code implementations7 Jun 2017 Isabel Pino Peña, Veronika Cheplygina, Sofia Paschaloudi, Morten Vuust, Jesper Carl, Ulla Møller Weinreich, Lasse Riis Østergaard, Marleen de Bruijne

The classifier has a stronger correlation with PFT than the density based method, the percentage of emphysema in the intersection of annotations from both radiologists, and the percentage of emphysema annotated by one of the radiologists.

Multiple Instance Learning

Label Stability in Multiple Instance Learning

no code implementations15 Mar 2017 Veronika Cheplygina, Lauge Sørensen, David M. J. Tax, Marleen de Bruijne, Marco Loog

We address the problem of \emph{instance label stability} in multiple instance learning (MIL) classifiers.

Multiple Instance Learning

Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners

no code implementations15 Mar 2017 Veronika Cheplygina, Annegreet van Opbroek, M. Arfan Ikram, Meike W. Vernooij, Marleen de Bruijne

We show that the asymmetry can indeed be informative, and that computing the similarity from the test image to the training images is more appropriate than the opposite direction.

Clustering Lesion Segmentation +2

Multiple Instance Learning: A Survey of Problem Characteristics and Applications

2 code implementations11 Dec 2016 Marc-André Carbonneau, Veronika Cheplygina, Eric Granger, Ghyslain Gagnon

Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag.

Benchmarking Document Classification +2

On Classification with Bags, Groups and Sets

no code implementations2 Jun 2014 Veronika Cheplygina, David M. J. Tax, Marco Loog

To better deal with such problems, several extensions of supervised learning have been proposed, where either training and/or test objects are sets of feature vectors.

Classification General Classification

Quantile Representation for Indirect Immunofluorescence Image Classification

no code implementations6 Feb 2014 David M. J. Tax, Veronika Cheplygina, Marco Loog

Considering one whole slide as a collection (a bag) of feature vectors, however, poses the problem of how to handle this bag.

Classification General Classification +1

Dissimilarity-based Ensembles for Multiple Instance Learning

no code implementations6 Feb 2014 Veronika Cheplygina, David M. J. Tax, Marco Loog

In multiple instance learning, objects are sets (bags) of feature vectors (instances) rather than individual feature vectors.

Multiple Instance Learning

Multiple Instance Learning with Bag Dissimilarities

no code implementations22 Sep 2013 Veronika Cheplygina, David M. J. Tax, Marco Loog

Multiple instance learning (MIL) is concerned with learning from sets (bags) of objects (instances), where the individual instance labels are ambiguous.

Multiple Instance Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.