no code implementations • 12 Dec 2022 • Lemeng Wu, Dilin Wang, Meng Li, Yunyang Xiong, Raghuraman Krishnamoorthi, Qiang Liu, Vikas Chandra
PathFusion introduces a path consistency loss between shallow and deep features, which encourages the 2D backbone and its fusion path to transform 2D features in a way that is semantically aligned with the transform of the 3D backbone.
no code implementations • 7 Dec 2022 • Seah Kim, Hyoukjun Kwon, Jinook Song, Jihyuck Jo, Yu-Hsin Chen, Liangzhen Lai, Vikas Chandra
Emerging real-time multi-model ML (RTMM) workloads such as AR/VR and drone control often involve dynamic behaviors in various levels; task, model, and layers (or, ML operators) within a model.
no code implementations • 4 Dec 2022 • Lemeng Wu, Dilin Wang, Chengyue Gong, Xingchao Liu, Yunyang Xiong, Rakesh Ranjan, Raghuraman Krishnamoorthi, Vikas Chandra, Qiang Liu
We perform evaluations on multiple 3D tasks and find that our PSF performs comparably to the standard diffusion model, outperforming other efficient 3D point cloud generation methods.
no code implementations • 16 Nov 2022 • Hyoukjun Kwon, Krishnakumar Nair, Jamin Seo, Jason Yik, Debabrata Mohapatra, Dongyuan Zhan, Jinook Song, Peter Capak, Peizhao Zhang, Peter Vajda, Colby Banbury, Mark Mazumder, Liangzhen Lai, Ashish Sirasao, Tushar Krishna, Harshit Khaitan, Vikas Chandra, Vijay Janapa Reddi
Real-time MMMT workloads impose heterogeneity and concurrency requirements on future ML systems and devices, necessitating the development of new capabilities.
no code implementations • 9 Nov 2022 • Haichuan Yang, Zhaojun Yang, Li Wan, Biqiao Zhang, Yangyang Shi, Yiteng Huang, Ivaylo Enchev, Limin Tang, Raziel Alvarez, Ming Sun, Xin Lei, Raghuraman Krishnamoorthi, Vikas Chandra
This paper proposes a hardware-efficient architecture, Linearized Convolution Network (LiCo-Net) for keyword spotting.
1 code implementation • 2 Jun 2022 • Yonggan Fu, Haichuan Yang, Jiayi Yuan, Meng Li, Cheng Wan, Raghuraman Krishnamoorthi, Vikas Chandra, Yingyan Lin
Efficient deep neural network (DNN) models equipped with compact operators (e. g., depthwise convolutions) have shown great potential in reducing DNNs' theoretical complexity (e. g., the total number of weights/operations) while maintaining a decent model accuracy.
no code implementations • 29 Mar 2022 • Jay Mahadeokar, Yangyang Shi, Ke Li, Duc Le, Jiedan Zhu, Vikas Chandra, Ozlem Kalinli, Michael L Seltzer
Streaming ASR with strict latency constraints is required in many speech recognition applications.
no code implementations • 2 Nov 2021 • Cole Hawkins, Haichuan Yang, Meng Li, Liangzhen Lai, Vikas Chandra
Low-rank tensor compression has been proposed as a promising approach to reduce the memory and compute requirements of neural networks for their deployment on edge devices.
1 code implementation • CVPR 2022 • Jiaqi Gu, Hyoukjun Kwon, Dilin Wang, Wei Ye, Meng Li, Yu-Hsin Chen, Liangzhen Lai, Vikas Chandra, David Z. Pan
Therefore, we propose HRViT, which enhances ViTs to learn semantically-rich and spatially-precise multi-scale representations by integrating high-resolution multi-branch architectures with ViTs.
Ranked #18 on
Semantic Segmentation
on Cityscapes val
no code implementations • 15 Oct 2021 • Haichuan Yang, Yuan Shangguan, Dilin Wang, Meng Li, Pierce Chuang, Xiaohui Zhang, Ganesh Venkatesh, Ozlem Kalinli, Vikas Chandra
From wearables to powerful smart devices, modern automatic speech recognition (ASR) models run on a variety of edge devices with different computational budgets.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 29 Sep 2021 • Yonggan Fu, Qixuan Yu, Meng Li, Xu Ouyang, Vikas Chandra, Yingyan Lin
Contrastive learning, which learns visual representations by enforcing feature consistency under different augmented views, has emerged as one of the most effective unsupervised learning methods.
1 code implementation • ICLR 2022 • Chengyue Gong, Dilin Wang, Meng Li, Xinlei Chen, Zhicheng Yan, Yuandong Tian, Qiang Liu, Vikas Chandra
In this work, we observe that the poor performance is due to a gradient conflict issue: the gradients of different sub-networks conflict with that of the supernet more severely in ViTs than CNNs, which leads to early saturation in training and inferior convergence.
Ranked #7 on
Neural Architecture Search
on ImageNet
no code implementations • 9 Jul 2021 • Dilin Wang, Yuan Shangguan, Haichuan Yang, Pierce Chuang, Jiatong Zhou, Meng Li, Ganesh Venkatesh, Ozlem Kalinli, Vikas Chandra
We apply noisy training to improve both dense and sparse state-of-the-art Emformer models and observe consistent WER reduction.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 16 Jun 2021 • Varun Nagaraja, Yangyang Shi, Ganesh Venkatesh, Ozlem Kalinli, Michael L. Seltzer, Vikas Chandra
On-device speech recognition requires training models of different sizes for deploying on devices with various computational budgets.
1 code implementation • 26 Apr 2021 • Chengyue Gong, Dilin Wang, Meng Li, Vikas Chandra, Qiang Liu
To alleviate this problem, in this work, we introduce novel loss functions in vision transformer training to explicitly encourage diversity across patch representations for more discriminative feature extraction.
Ranked #15 on
Semantic Segmentation
on Cityscapes val
1 code implementation • 2 Mar 2021 • Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman Parashar, Christopher W. Fletcher
The key idea is to derive a smooth, differentiable approximation to the otherwise non-smooth, non-convex search space.
no code implementations • 2 Mar 2021 • Lucas D. Young, Fitsum A. Reda, Rakesh Ranjan, Jon Morton, Jun Hu, Yazhu Ling, Xiaoyu Xiang, David Liu, Vikas Chandra
(2) A novel Feature Matching Loss that allows knowledge distillation from large denoising networks in the form of a perceptual content loss.
no code implementations • 23 Feb 2021 • Ganesh Venkatesh, Alagappan Valliappan, Jay Mahadeokar, Yuan Shangguan, Christian Fuegen, Michael L. Seltzer, Vikas Chandra
Recurrent transducer models have emerged as a promising solution for speech recognition on the current and next generation smart devices.
2 code implementations • 16 Feb 2021 • Dilin Wang, Chengyue Gong, Meng Li, Qiang Liu, Vikas Chandra
Weight-sharing NAS builds a supernet that assembles all the architectures as its sub-networks and jointly trains the supernet with the sub-networks.
Ranked #12 on
Neural Architecture Search
on ImageNet
1 code implementation • ICLR 2021 • Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin
In this paper, we attempt to explore low-precision training from a new perspective as inspired by recent findings in understanding DNN training: we conjecture that DNNs' precision might have a similar effect as the learning rate during DNN training, and advocate dynamic precision along the training trajectory for further boosting the time/energy efficiency of DNN training.
no code implementations • 3 Dec 2020 • Sachin Mehta, Amit Kumar, Fitsum Reda, Varun Nasery, Vikram Mulukutla, Rakesh Ranjan, Vikas Chandra
Video transmission applications (e. g., conferencing) are gaining momentum, especially in times of global health pandemic.
no code implementations • 30 Nov 2020 • Hsin-Pai Cheng, Feng Liang, Meng Li, Bowen Cheng, Feng Yan, Hai Li, Vikas Chandra, Yiran Chen
We use ScaleNAS to create high-resolution models for two different tasks, ScaleNet-P for human pose estimation and ScaleNet-S for semantic segmentation.
Ranked #5 on
Multi-Person Pose Estimation
on COCO test-dev
no code implementations • 25 Nov 2020 • Yutong Bai, Haoqi Fan, Ishan Misra, Ganesh Venkatesh, Yongyi Lu, Yuyin Zhou, Qihang Yu, Vikas Chandra, Alan Yuille
To this end, we present Temporal-aware Contrastive self-supervised learningTaCo, as a general paradigm to enhance video CSL.
1 code implementation • CVPR 2021 • Chengyue Gong, Dilin Wang, Meng Li, Vikas Chandra, Qiang Liu
Data augmentation (DA) is an essential technique for training state-of-the-art deep learning systems.
2 code implementations • CVPR 2021 • Dilin Wang, Meng Li, Chengyue Gong, Vikas Chandra
Our discovered model family, AttentiveNAS models, achieves top-1 accuracy from 77. 3% to 80. 7% on ImageNet, and outperforms SOTA models, including BigNAS and Once-for-All networks.
Ranked #21 on
Neural Architecture Search
on ImageNet
no code implementations • 28 Oct 2020 • Yongan Zhang, Yonggan Fu, Weiwen Jiang, Chaojian Li, Haoran You, Meng Li, Vikas Chandra, Yingyan Lin
Powerful yet complex deep neural networks (DNNs) have fueled a booming demand for efficient DNN solutions to bring DNN-powered intelligence into numerous applications.
no code implementations • 22 Aug 2020 • Ting-Wu Chin, Pierce I-Jen Chuang, Vikas Chandra, Diana Marculescu
Weight quantization for deep ConvNets has shown promising results for applications such as image classification and semantic segmentation and is especially important for applications where memory storage is limited.
no code implementations • 8 Jul 2020 • Hsin-Pai Cheng, Tunhou Zhang, Yixing Zhang, Shi-Yu Li, Feng Liang, Feng Yan, Meng Li, Vikas Chandra, Hai Li, Yiran Chen
To preserve graph correlation information in encoding, we propose NASGEM which stands for Neural Architecture Search via Graph Embedding Method.
no code implementations • 13 Feb 2020 • Meng Li, Yilei Li, Pierce Chuang, Liangzhen Lai, Vikas Chandra
Neural network accelerator is a key enabler for the on-device AI inference, for which energy efficiency is an important metric.
no code implementations • 10 Feb 2020 • Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Liangzhen Lai, Tushar Krishna, Vikas Chandra, Weiwen Jiang, Yiyu Shi
Neural Architecture Search (NAS) has demonstrated its power on various AI accelerating platforms such as Field Programmable Gate Arrays (FPGAs) and Graphic Processing Units (GPUs).
1 code implementation • ICLR 2020 • Dilin Wang, Meng Li, Lemeng Wu, Vikas Chandra, Qiang Liu
Designing energy-efficient networks is of critical importance for enabling state-of-the-art deep learning in mobile and edge settings where the computation and energy budgets are highly limited.
no code implementations • 25 Sep 2019 • Ting-Wu Chin, Pierce I-Jen Chuang, Vikas Chandra, Diana Marculescu
Weight Quantization for deep convolutional neural networks (CNNs) has shown promising results in compressing and accelerating CNN-powered applications such as semantic segmentation, gesture recognition, and scene understanding.
no code implementations • 13 Sep 2019 • Hyoukjun Kwon, Liangzhen Lai, Tushar Krishna, Vikas Chandra
The results suggest that HDA is an alternative class of Pareto-optimal accelerators to RDA with strength in energy, which can be a better choice than RDAs depending on the use cases.
Distributed, Parallel, and Cluster Computing
1 code implementation • 2 Jun 2018 • Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vikas Chandra
Experiments show that accuracy can be increased by 30% for the CIFAR-10 dataset with only 5% globally shared data.
1 code implementation • 19 Jan 2018 • Liangzhen Lai, Naveen Suda, Vikas Chandra
Deep Neural Networks are becoming increasingly popular in always-on IoT edge devices performing data analytics right at the source, reducing latency as well as energy consumption for data communication.
no code implementations • 12 Jan 2018 • Liangzhen Lai, Naveen Suda, Vikas Chandra
Efficient and compact neural network models are essential for enabling the deployment on mobile and embedded devices.
no code implementations • 5 Dec 2017 • Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Joon Kyung Kim, Vikas Chandra, Hadi Esmaeilzadeh
Compared to Stripes, BitFusion provides 2. 6x speedup and 3. 9x energy reduction at 45 nm node when BitFusion area and frequency are set to those of Stripes.
16 code implementations • 20 Nov 2017 • Yundong Zhang, Naveen Suda, Liangzhen Lai, Vikas Chandra
We train various neural network architectures for keyword spotting published in literature to compare their accuracy and memory/compute requirements.
Ranked #13 on
Keyword Spotting
on Google Speech Commands
no code implementations • ICLR 2018 • Meng Li, Liangzhen Lai, Naveen Suda, Vikas Chandra, David Z. Pan
Massive data exist among user local platforms that usually cannot support deep neural network (DNN) training due to computation and storage resource constraints.
no code implementations • 8 Mar 2017 • Liangzhen Lai, Naveen Suda, Vikas Chandra
To alleviate these problems to some extent, prior research utilize low precision fixed-point numbers to represent the CNN weights and activations.