Search Results for author: Vikram Nathan

Found 6 papers, 1 papers with code

Cortex: Harnessing Correlations to Boost Query Performance

no code implementations12 Dec 2020 Vikram Nathan, Jialin Ding, Tim Kraska, Mohammad Alizadeh

Unlike prior work, Cortex can adapt itself to any existing primary index, whether single or multi-dimensional, to harness a broad variety of correlations, such as those that exist between more than two attributes or have a large number of outliers.

Attribute

Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed Workloads

no code implementations23 Jun 2020 Jialin Ding, Vikram Nathan, Mohammad Alizadeh, Tim Kraska

Filtering data based on predicates is one of the most fundamental operations for any modern data warehouse.

Learning Multi-dimensional Indexes

no code implementations3 Dec 2019 Vikram Nathan, Jialin Ding, Mohammad Alizadeh, Tim Kraska

Scanning and filtering over multi-dimensional tables are key operations in modern analytical database engines.

LISA: Towards Learned DNA Sequence Search

no code implementations10 Oct 2019 Darryl Ho, Jialin Ding, Sanchit Misra, Nesime Tatbul, Vikram Nathan, Vasimuddin Md, Tim Kraska

Next-generation sequencing (NGS) technologies have enabled affordable sequencing of billions of short DNA fragments at high throughput, paving the way for population-scale genomics.

Accurate Streaming Support Vector Machines

no code implementations8 Dec 2014 Vikram Nathan, Sharath Raghvendra

A widely-used tool for binary classification is the Support Vector Machine (SVM), a supervised learning technique that finds the "maximum margin" linear separator between the two classes.

Binary Classification

Cannot find the paper you are looking for? You can Submit a new open access paper.