no code implementations • 24 Mar 2025 • Boqi Chen, Cédric Vincent-Cuaz, Lydia A. Schoenpflug, Manuel Madeira, Lisa Fournier, Vaishnavi Subramanian, Sonali Andani, Samuel Ruiperez-Campillo, Julia E. Vogt, Raphaëlle Luisier, Dorina Thanou, Viktor H. Koelzer, Pascal Frossard, Gabriele Campanella, Gunnar Rätsch
Vision foundation models (FMs) are accelerating the development of digital pathology algorithms and transforming biomedical research.
2 code implementations • 19 Dec 2023 • Lydia A. Schoenpflug, Viktor H. Koelzer
We find that a "soft", probability-map instance segmentation ground truth leads to best model performance.
no code implementations • 27 Sep 2023 • Marc Aubreville, Nikolas Stathonikos, Taryn A. Donovan, Robert Klopfleisch, Jonathan Ganz, Jonas Ammeling, Frauke Wilm, Mitko Veta, Samir Jabari, Markus Eckstein, Jonas Annuscheit, Christian Krumnow, Engin Bozaba, Sercan Cayir, Hongyan Gu, Xiang 'Anthony' Chen, Mostafa Jahanifar, Adam Shephard, Satoshi Kondo, Satoshi Kasai, Sujatha Kotte, VG Saipradeep, Maxime W. Lafarge, Viktor H. Koelzer, Ziyue Wang, Yongbing Zhang, Sen yang, Xiyue Wang, Katharina Breininger, Christof A. Bertram
The challenge provided annotated histologic tumor images from six different domains and evaluated the algorithmic approaches for mitotic figure detection provided by nine challenge participants on ten independent domains.
no code implementations • 17 Jul 2023 • Fan Fan, Georgia Martinez, Thomas Desilvio, John Shin, Yijiang Chen, Bangchen Wang, Takaya Ozeki, Maxime W. Lafarge, Viktor H. Koelzer, Laura Barisoni, Anant Madabhushi, Satish E. Viswanath, Andrew Janowczyk
Batch effects (BEs) refer to systematic technical differences in data collection unrelated to biological variations whose noise is shown to negatively impact machine learning (ML) model generalizability.
1 code implementation • 6 Apr 2023 • Lydia A. Schoenpflug, Maxime W. Lafarge, Anja L. Frei, Viktor H. Koelzer
Automating tissue segmentation and tumor detection in histopathology images of colorectal cancer (CRC) is an enabler for faster diagnostic pathology workflows.
no code implementations • 3 Jan 2023 • Maxime W. Lafarge, Viktor H. Koelzer
Making histopathology image classifiers robust to a wide range of real-world variability is a challenging task.
no code implementations • 6 Apr 2022 • Marc Aubreville, Nikolas Stathonikos, Christof A. Bertram, Robert Klopleisch, Natalie ter Hoeve, Francesco Ciompi, Frauke Wilm, Christian Marzahl, Taryn A. Donovan, Andreas Maier, Jack Breen, Nishant Ravikumar, Youjin Chung, Jinah Park, Ramin Nateghi, Fattaneh Pourakpour, Rutger H. J. Fick, Saima Ben Hadj, Mostafa Jahanifar, Nasir Rajpoot, Jakob Dexl, Thomas Wittenberg, Satoshi Kondo, Maxime W. Lafarge, Viktor H. Koelzer, Jingtang Liang, YuBo Wang, Xi Long, Jingxin Liu, Salar Razavi, April Khademi, Sen yang, Xiyue Wang, Mitko Veta, Katharina Breininger
The goal of the MICCAI MIDOG 2021 challenge has been to propose and evaluate methods that counter this domain shift and derive scanner-agnostic mitosis detection algorithms.
1 code implementation • 1 Mar 2022 • Jiqing Wu, Inti Zlobec, Maxime Lafarge, Yukun He, Viktor H. Koelzer
Compared to the SOTA baselines supported in WILDS, the results confirm the superior performance of IID representation learning on OOD tasks.
1 code implementation • 15 Jan 2022 • Jiqing Wu, Nanda Horeweg, Marco de Bruyn, Remi A. Nout, Ina M. Jürgenliemk-Schulz, Ludy C. H. W. Lutgens, Jan J. Jobsen, Elzbieta M. van der Steen-Banasik, Hans W. Nijman, Vincent T. H. B. M. Smit, Tjalling Bosse, Carien L. Creutzberg, Viktor H. Koelzer
Randomized controlled trials (RCTs) are considered as the gold standard for testing causal hypotheses in the clinical domain.
no code implementations • 2 Sep 2021 • Maxime W. Lafarge, Viktor H. Koelzer
Automated detection of mitotic figures in histopathology images is a challenging task: here, we present the different steps that describe the strategy we applied to participate in the MIDOG 2021 competition.