Search Results for author: Vincent Y. Zhao

Found 6 papers, 4 papers with code

Rethinking the Role of Token Retrieval in Multi-Vector Retrieval

2 code implementations NeurIPS 2023 Jinhyuk Lee, Zhuyun Dai, Sai Meher Karthik Duddu, Tao Lei, Iftekhar Naim, Ming-Wei Chang, Vincent Y. Zhao

Multi-vector retrieval models such as ColBERT [Khattab and Zaharia, 2020] allow token-level interactions between queries and documents, and hence achieve state of the art on many information retrieval benchmarks.

Information Retrieval Retrieval

Multi-Vector Retrieval as Sparse Alignment

no code implementations2 Nov 2022 Yujie Qian, Jinhyuk Lee, Sai Meher Karthik Duddu, Zhuyun Dai, Siddhartha Brahma, Iftekhar Naim, Tao Lei, Vincent Y. Zhao

With sparsified unary saliences, we are able to prune a large number of query and document token vectors and improve the efficiency of multi-vector retrieval.

Argument Retrieval Information Retrieval +1

Promptagator: Few-shot Dense Retrieval From 8 Examples

no code implementations23 Sep 2022 Zhuyun Dai, Vincent Y. Zhao, Ji Ma, Yi Luan, Jianmo Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith B. Hall, Ming-Wei Chang

To amplify the power of a few examples, we propose Prompt-base Query Generation for Retriever (Promptagator), which leverages large language models (LLM) as a few-shot query generator, and creates task-specific retrievers based on the generated data.

Information Retrieval Natural Questions +1

Large Dual Encoders Are Generalizable Retrievers

2 code implementations15 Dec 2021 Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma, Vincent Y. Zhao, Yi Luan, Keith B. Hall, Ming-Wei Chang, Yinfei Yang

With multi-stage training, surprisingly, scaling up the model size brings significant improvement on a variety of retrieval tasks, especially for out-of-domain generalization.

Domain Generalization Retrieval +1

Finetuned Language Models Are Zero-Shot Learners

6 code implementations ICLR 2022 Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, Quoc V. Le

We show that instruction tuning -- finetuning language models on a collection of tasks described via instructions -- substantially improves zero-shot performance on unseen tasks.

ARC Common Sense Reasoning +9

Cannot find the paper you are looking for? You can Submit a new open access paper.