no code implementations • 5 Nov 2024 • Yonatan Kurniawan, Tracianne B. Neilsen, Benjamin L. Francis, Alex M. Stankovic, Mingjian Wen, Ilia Nikiforov, Ellad B. Tadmor, Vasily V. Bulatov, Vincenzo Lordi, Mark K. Transtrum
These results are encouraging for diverse future applications, particularly active learning in large machine learning models.
no code implementations • 28 Aug 2024 • Bo Lei, Enze Chen, Hyuna Kwon, Tim Hsu, Babak Sadigh, Vincenzo Lordi, Timofey Frolov, Fei Zhou
The diffusion model has emerged as a powerful tool for generating atomic structures for materials science.
1 code implementation • 18 Apr 2024 • Daniel Schwalbe-Koda, Sebastien Hamel, Babak Sadigh, Fei Zhou, Vincenzo Lordi
This method provides a general tool for data-driven atomistic modeling and combines efforts in ML, simulations, and physical explainability.
1 code implementation • 1 Feb 2024 • Joshua A. Vita, Amit Samanta, Fei Zhou, Vincenzo Lordi
Model ensembles are effective tools for estimating prediction uncertainty in deep learning atomistic force fields.