Search Results for author: Vivek Ramanujan

Found 12 papers, 12 papers with code

Neural Priming for Sample-Efficient Adaptation

1 code implementation NeurIPS 2023 Matthew Wallingford, Vivek Ramanujan, Alex Fang, Aditya Kusupati, Roozbeh Mottaghi, Aniruddha Kembhavi, Ludwig Schmidt, Ali Farhadi

Performing lightweight updates on the recalled data significantly improves accuracy across a variety of distribution shift and transfer learning benchmarks.

Transfer Learning

Neural Radiance Field Codebooks

1 code implementation10 Jan 2023 Matthew Wallingford, Aditya Kusupati, Alex Fang, Vivek Ramanujan, Aniruddha Kembhavi, Roozbeh Mottaghi, Ali Farhadi

Compositional representations of the world are a promising step towards enabling high-level scene understanding and efficient transfer to downstream tasks.

Object Representation Learning +1

Matryoshka Representation Learning

4 code implementations26 May 2022 Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ramanujan, William Howard-Snyder, KaiFeng Chen, Sham Kakade, Prateek Jain, Ali Farhadi

The flexibility within the learned Matryoshka Representations offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for long-tail few-shot classification, all while being as robust as the original representations.

Ranked #25 on Image Classification on ObjectNet (using extra training data)

4k Image Classification +2

Forward Compatible Training for Large-Scale Embedding Retrieval Systems

1 code implementation CVPR 2022 Vivek Ramanujan, Pavan Kumar Anasosalu Vasu, Ali Farhadi, Oncel Tuzel, Hadi Pouransari

To avoid the cost of backfilling, BCT modifies training of the new model to make its representations compatible with those of the old model.

Representation Learning Retrieval

Effects of Parameter Norm Growth During Transformer Training: Inductive Bias from Gradient Descent

1 code implementation EMNLP 2021 William Merrill, Vivek Ramanujan, Yoav Goldberg, Roy Schwartz, Noah Smith

To better understand this bias, we study the tendency for transformer parameters to grow in magnitude ($\ell_2$ norm) during training, and its implications for the emergent representations within self attention layers.

Inductive Bias

Supermasks in Superposition

2 code implementations NeurIPS 2020 Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari, Jason Yosinski, Ali Farhadi

We present the Supermasks in Superposition (SupSup) model, capable of sequentially learning thousands of tasks without catastrophic forgetting.

Improving Shape Deformation in Unsupervised Image-to-Image Translation

4 code implementations ECCV 2018 Aaron Gokaslan, Vivek Ramanujan, Daniel Ritchie, Kwang In Kim, James Tompkin

Unsupervised image-to-image translation techniques are able to map local texture between two domains, but they are typically unsuccessful when the domains require larger shape change.

Semantic Segmentation Translation +1

Cannot find the paper you are looking for? You can Submit a new open access paper.