no code implementations • 19 Jan 2022 • Armen Aghajanyan, Bernie Huang, Candace Ross, Vladimir Karpukhin, Hu Xu, Naman Goyal, Dmytro Okhonko, Mandar Joshi, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer
We introduce CM3, a family of causally masked generative models trained over a large corpus of structured multi-modal documents that can contain both text and image tokens.
2 code implementations • 18 Dec 2021 • Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Dmytro Okhonko, Samuel Broscheit, Gautier Izacard, Patrick Lewis, Barlas Oğuz, Edouard Grave, Wen-tau Yih, Sebastian Riedel
In order to address increasing demands of real-world applications, the research for knowledge-intensive NLP (KI-NLP) should advance by capturing the challenges of a truly open-domain environment: web-scale knowledge, lack of structure, inconsistent quality and noise.
no code implementations • 10 Dec 2021 • Marjan Ghazvininejad, Vladimir Karpukhin, Vera Gor, Asli Celikyilmaz
We show that soft-prompt based conditional text generation can be improved with simple and efficient methods that simulate modeling the discourse structure of human written text.
1 code implementation • Findings (NAACL) 2022 • Barlas Oğuz, Kushal Lakhotia, Anchit Gupta, Patrick Lewis, Vladimir Karpukhin, Aleksandra Piktus, Xilun Chen, Sebastian Riedel, Wen-tau Yih, Sonal Gupta, Yashar Mehdad
Pre-training on larger datasets with ever increasing model size is now a proven recipe for increased performance across almost all NLP tasks.
Ranked #2 on
Passage Retrieval
on Natural Questions
(using extra training data)
no code implementations • 1 Jan 2021 • Sewon Min, Jordan Boyd-Graber, Chris Alberti, Danqi Chen, Eunsol Choi, Michael Collins, Kelvin Guu, Hannaneh Hajishirzi, Kenton Lee, Jennimaria Palomaki, Colin Raffel, Adam Roberts, Tom Kwiatkowski, Patrick Lewis, Yuxiang Wu, Heinrich Küttler, Linqing Liu, Pasquale Minervini, Pontus Stenetorp, Sebastian Riedel, Sohee Yang, Minjoon Seo, Gautier Izacard, Fabio Petroni, Lucas Hosseini, Nicola De Cao, Edouard Grave, Ikuya Yamada, Sonse Shimaoka, Masatoshi Suzuki, Shumpei Miyawaki, Shun Sato, Ryo Takahashi, Jun Suzuki, Martin Fajcik, Martin Docekal, Karel Ondrej, Pavel Smrz, Hao Cheng, Yelong Shen, Xiaodong Liu, Pengcheng He, Weizhu Chen, Jianfeng Gao, Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad, Wen-tau Yih
We review the EfficientQA competition from NeurIPS 2020.
no code implementations • ACL 2021 • Jean Maillard, Vladimir Karpukhin, Fabio Petroni, Wen-tau Yih, Barlas Oğuz, Veselin Stoyanov, Gargi Ghosh
Retrieving relevant contexts from a large corpus is a crucial step for tasks such as open-domain question answering and fact checking.
no code implementations • ACL 2021 • Michael Schlichtkrull, Vladimir Karpukhin, Barlas Oğuz, Mike Lewis, Wen-tau Yih, Sebastian Riedel
Structured information is an important knowledge source for automatic verification of factual claims.
1 code implementation • Findings (NAACL) 2022 • Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad, Scott Yih
We study open-domain question answering with structured, unstructured and semi-structured knowledge sources, including text, tables, lists and knowledge bases.
Ranked #1 on
Open-Domain Question Answering
on WebQuestions
(using extra training data)
Knowledge Base Question Answering
Open-Domain Question Answering
3 code implementations • NAACL 2021 • Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, Vassilis Plachouras, Tim Rocktäschel, Sebastian Riedel
We test both task-specific and general baselines, evaluating downstream performance in addition to the ability of the models to provide provenance.
Ranked #3 on
Entity Linking
on KILT: WNED-CWEB
12 code implementations • NeurIPS 2020 • Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela
Large pre-trained language models have been shown to store factual knowledge in their parameters, and achieve state-of-the-art results when fine-tuned on downstream NLP tasks.
Ranked #6 on
Fact Verification
on FEVER
(using extra training data)
18 code implementations • EMNLP 2020 • Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method.
Ranked #1 on
Question Answering
on NaturalQA
1 code implementation • ICML 2020 • Marjan Ghazvininejad, Vladimir Karpukhin, Luke Zettlemoyer, Omer Levy
This difficultly is compounded during training with cross entropy loss, which can highly penalize small shifts in word order.
no code implementations • WS 2019 • Vladimir Karpukhin, Omer Levy, Jacob Eisenstein, Marjan Ghazvininejad
We consider the problem of making machine translation more robust to character-level variation at the source side, such as typos.