1 code implementation • Github 2024 • M. Torcoli, C.-W. Wu, S. Dick, P. A. Williams, M. M. Halimeh, W., Wolcott, E. A. P. Habets
ODAQ is a dataset addressing the scarcity of openly available collections of audio signals accompanied by corresponding subjective scores of perceived quality.
1 code implementation • Signal Processing 2024 • Mei, W., Xu, Y. & Liu, L.
This study considered the problem of multiple model estimation from the perspective of sigma-max inference (probability - possibility inference), while focusing on discovering whether certain of the unknown quantities involved could be more faithfully modeled as fuzzy uncertainty.
1 code implementation • Proceedings of the AAAI Conference on Artificial Intelligence 2023 • Zeng, D., Liu, Chen, W., Zhou, L., Zhang, M., & Qu, H
Despite the great achievements of Graph Neural Networks (GNNs) in graph learning, conventional GNNs struggle to break through the upper limit of the expressiveness of first-order Weisfeiler-Leman graph isomorphism test algorithm (1-WL) due to the consistency of the propagation paradigm of GNNs with the 1-WL. Based on the fact that it is easier to distinguish the original graph through subgraphs, we propose a novel framework neural network framework called Substructure Aware Graph Neural Networks (SAGNN) to address these issues.
Ranked #9 on
Graph Regression
on ZINC-500k
1 code implementation • 2 Dec 2020 • SBND Collaboration, R. Acciarri, C. Adams, C. Andreopoulos, J. Asaadi, M. Babicz, C. Backhouse, W. Badgett, L. Bagby, D. Barker, V. Basque, Q. Bazetto, M. Betancourt, A. Bhanderi, A. Bhat, C. Bonifazi, D. Brailsford, G. Brandt, T. Brooks, F. Carneiro, Y. Chen, H. Chen, G. Chisnall, I. Crespo-Anadón, E. Cristaldo, C. Cuesta, I., L. de Icaza Astiz, A. De Roeck, G. de Sá Pereira, M. Del Tutto, V. Di Benedetto, A. Ereditato, J. Evans, C. Ezeribe, S. Fitzpatrick, T. Fleming, W. Foreman, D. Franco, I. Furic, P. Furmanski, S. Gao, D. Garcia-Gamez, H. Frandini, G. Ge, I. Gil-Botella, S. Gollapinni, O. Goodwin, P. Green, C. Griffith, R. Guenette, P. Guzowski, T. Ham, J. Henzerling, A. Holin, B. Howard, R., S. Jones, D. Kalra, G. Karagiorgi, L. Kashur, W. Ketchum, M., J. Kim, A. Kudryavtsev, J. Larkin, H. Lay, I. Lepetic, B., R. Littlejohn, W., C. Louis, A., A. Machado, M. Malek, D. Mardsen, C. Mariani, F. Marinho, A. Mastbaum, K. Mavrokoridis, N. McConkey, V. Meddage, P. Méndez, T. Mettler, K. Mistry, A. Mogan, J. Molina, M. Mooney, L. Mora, C., A. Moura, J. Mousseau, A. Navrer-Agasson, F., J. Nicolas-Arnaldos, A. Nowak, O. Palamara, V. Pandey, J. Pater, L. Paulucci, V., L. Pimentel, F. Psihas, G. Putnam, X. Qian, E. Raguzin, H. Ray, M. Reggiani-Guzzo, D. Rivera, M. Roda, M. Ross-Lonergan, G. Scanavini, A. Scarff, D., W. Schmitz, A. Schukraft, E. Segreto, M. Soares Nunes, M. Soderberg, S. Söldner-Rembold, J. Spitz, N., J., C. Spooner, M. Stancari, V. Stenico, A. Szelc, W. Tang, J. Tena Vidal, D. Torretta, M. Toups, C. Touramanis, M. Tripathi, S. Tufanli, E. Tyley, G., A. Valdiviesso, E. Worcester, M. Worcester, G. Yarbrough, J. Yu, B. Zamorano, J. Zennamo, A. Zglam
In liquid argon time projection chambers exposed to neutrino beams and running on or near surface levels, cosmic muons and other cosmic particles are incident on the detectors while a single neutrino-induced event is being recorded.
Semantic Segmentation
Data Analysis, Statistics and Probability