Search Results for author: Weijie Bian

Found 8 papers, 4 papers with code

KEEP: An Industrial Pre-Training Framework for Online Recommendation via Knowledge Extraction and Plugging

no code implementations22 Aug 2022 Yujing Zhang, Zhangming Chan, Shuhao Xu, Weijie Bian, Shuguang Han, Hongbo Deng, Bo Zheng

To alleviate this issue, we propose to extract knowledge from the \textit{super-domain} that contains web-scale and long-time impression data, and further assist the online recommendation task (downstream task).

Recommendation Systems

Adversarial Gradient Driven Exploration for Deep Click-Through Rate Prediction

no code implementations21 Dec 2021 Kailun Wu, Zhangming Chan, Weijie Bian, Lejian Ren, Shiming Xiang, Shuguang Han, Hongbo Deng, Bo Zheng

We further show that such a process is equivalent to adding an adversarial perturbation to the model input, and thereby name our proposed approach as an the Adversarial Gradient Driven Exploration (AGE).

Click-Through Rate Prediction Recommendation Systems

CAN: Feature Co-Action for Click-Through Rate Prediction

no code implementations11 Nov 2020 Weijie Bian, Kailun Wu, Lejian Ren, Qi Pi, Yujing Zhang, Can Xiao, Xiang-Rong Sheng, Yong-Nan Zhu, Zhangming Chan, Na Mou, Xinchen Luo, Shiming Xiang, Guorui Zhou, Xiaoqiang Zhu, Hongbo Deng

For example, a simple attempt to learn the combination of feature A and feature B <A, B> as the explicit cartesian product representation of new features can outperform previous implicit feature interaction models including factorization machine (FM)-based models and their variations.

Click-Through Rate Prediction

Res-embedding for Deep Learning Based Click-Through Rate Prediction Modeling

no code implementations25 Jun 2019 Guorui Zhou, Kailun Wu, Weijie Bian, Zhao Yang, Xiaoqiang Zhu, Kun Gai

In this paper, we model user behavior using an interest delay model, study carefully the embedding mechanism, and obtain two important results: (i) We theoretically prove that small aggregation radius of embedding vectors of items which belongs to a same user interest domain will result in good generalization performance of deep CTR model.

Click-Through Rate Prediction

Practice on Long Sequential User Behavior Modeling for Click-Through Rate Prediction

2 code implementations22 May 2019 Qi Pi, Weijie Bian, Guorui Zhou, Xiaoqiang Zhu, Kun Gai

To our knowledge, this is one of the first industrial solutions that are capable of handling long sequential user behavior data with length scaling up to thousands.

Click-Through Rate Prediction Recommendation Systems

Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

1 code implementation2 May 2019 Kan Ren, Jiarui Qin, Yuchen Fang, Wei-Nan Zhang, Lei Zheng, Weijie Bian, Guorui Zhou, Jian Xu, Yong Yu, Xiaoqiang Zhu, Kun Gai

In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user.

Memorization

Deep Interest Evolution Network for Click-Through Rate Prediction

15 code implementations11 Sep 2018 Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, Kun Gai

Easy-to-use, Modular and Extendible package of deep-learning based CTR models. DeepFM, DeepInterestNetwork(DIN), DeepInterestEvolutionNetwork(DIEN), DeepCrossNetwork(DCN), AttentionalFactorizationMachine(AFM), Neural Factorization Machine(NFM), AutoInt

Click-Through Rate Prediction

Rocket Launching: A Universal and Efficient Framework for Training Well-performing Light Net

2 code implementations14 Aug 2017 Guorui Zhou, Ying Fan, Runpeng Cui, Weijie Bian, Xiaoqiang Zhu, Kun Gai

Models applied on real time response task, like click-through rate (CTR) prediction model, require high accuracy and rigorous response time.

Click-Through Rate Prediction

Cannot find the paper you are looking for? You can Submit a new open access paper.