Search Results for author: Weipeng Xu

Found 32 papers, 9 papers with code

A Deeper Look into DeepCap

no code implementations20 Nov 2021 Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, Christian Theobalt

Human performance capture is a highly important computer vision problem with many applications in movie production and virtual/augmented reality.

Pose Estimation

Robust and Accurate Object Detection via Self-Knowledge Distillation

1 code implementation14 Nov 2021 Weipeng Xu, Pengzhi Chu, Renhao Xie, Xiongziyan Xiao, Hongcheng Huang

In this paper, we propose Unified Decoupled Feature Alignment (UDFA), a novel fine-tuning paradigm which achieves better performance than existing methods, by fully exploring the combination between self-knowledge distillation and adversarial training for object detection.

Adversarial Robustness Object Detection +2

NRST: Non-rigid Surface Tracking from Monocular Video

no code implementations6 Jul 2021 Marc Habermann, Weipeng Xu, Helge Rhodin, Michael Zollhoefer, Gerard Pons-Moll, Christian Theobalt

Our texture term exploits the orientation information in the micro-structures of the objects, e. g., the yarn patterns of fabrics.

Modeling Clothing as a Separate Layer for an Animatable Human Avatar

no code implementations28 Jun 2021 Donglai Xiang, Fabian Prada, Timur Bagautdinov, Weipeng Xu, Yuan Dong, He Wen, Jessica Hodgins, Chenglei Wu

To address these difficulties, we propose a method to build an animatable clothed body avatar with an explicit representation of the clothing on the upper body from multi-view captured videos.

Revitalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

no code implementations ICCV 2021 Taosha Fan, Kalyan Vasudev Alwala, Donglai Xiang, Weipeng Xu, Todd Murphey, Mustafa Mukadam

We propose a novel sparse constrained formulation and from it derive a real-time optimization method for 3D human pose and shape estimation.

Driving-Signal Aware Full-Body Avatars

no code implementations21 May 2021 Timur Bagautdinov, Chenglei Wu, Tomas Simon, Fabian Prada, Takaaki Shiratori, Shih-En Wei, Weipeng Xu, Yaser Sheikh, Jason Saragih

The core intuition behind our method is that better drivability and generalization can be achieved by disentangling the driving signals and remaining generative factors, which are not available during animation.

Imputation

Real-time Deep Dynamic Characters

no code implementations4 May 2021 Marc Habermann, Lingjie Liu, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, Christian Theobalt

We propose a deep videorealistic 3D human character model displaying highly realistic shape, motion, and dynamic appearance learned in a new weakly supervised way from multi-view imagery.

Graph Convolutional Network

Neural Monocular 3D Human Motion Capture with Physical Awareness

no code implementations3 May 2021 Soshi Shimada, Vladislav Golyanik, Weipeng Xu, Patrick Pérez, Christian Theobalt

We present a new trainable system for physically plausible markerless 3D human motion capture, which achieves state-of-the-art results in a broad range of challenging scenarios.

3D Pose Estimation

Estimating Egocentric 3D Human Pose in Global Space

no code implementations ICCV 2021 Jian Wang, Lingjie Liu, Weipeng Xu, Kripasindhu Sarkar, Christian Theobalt

Furthermore, these methods suffer from limited accuracy and temporal instability due to ambiguities caused by the monocular setup and the severe occlusion in a strongly distorted egocentric perspective.

3D Human Pose Estimation

Learning Speech-driven 3D Conversational Gestures from Video

no code implementations13 Feb 2021 Ikhsanul Habibie, Weipeng Xu, Dushyant Mehta, Lingjie Liu, Hans-Peter Seidel, Gerard Pons-Moll, Mohamed Elgharib, Christian Theobalt

We propose the first approach to automatically and jointly synthesize both the synchronous 3D conversational body and hand gestures, as well as 3D face and head animations, of a virtual character from speech input.

Hand Pose Estimation

Neural Re-Rendering of Humans from a Single Image

no code implementations ECCV 2020 Kripasindhu Sarkar, Dushyant Mehta, Weipeng Xu, Vladislav Golyanik, Christian Theobalt

Human re-rendering from a single image is a starkly under-constrained problem, and state-of-the-art algorithms often exhibit undesired artefacts, such as over-smoothing, unrealistic distortions of the body parts and garments, or implausible changes of the texture.

Translation

Using Feature Alignment Can Improve Clean Average Precision and Adversarial Robustness in Object Detection

1 code implementation8 Dec 2020 Weipeng Xu, Hongcheng Huang, Shaoyou Pan

In this paper, we propose that using feature alignment of intermediate layer can improve clean AP and robustness in object detection.

Adversarial Attack Adversarial Robustness +1

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

no code implementations20 Aug 2020 Soshi Shimada, Vladislav Golyanik, Weipeng Xu, Christian Theobalt

We, therefore, present PhysCap, the first algorithm for physically plausible, real-time and marker-less human 3D motion capture with a single colour camera at 25 fps.

Monocular Real-time Hand Shape and Motion Capture using Multi-modal Data

2 code implementations CVPR 2020 Yuxiao Zhou, Marc Habermann, Weipeng Xu, Ikhsanul Habibie, Christian Theobalt, Feng Xu

We present a novel method for monocular hand shape and pose estimation at unprecedented runtime performance of 100fps and at state-of-the-art accuracy.

Pose Estimation

DeepCap: Monocular Human Performance Capture Using Weak Supervision

no code implementations CVPR 2020 Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, Christian Theobalt

Human performance capture is a highly important computer vision problem with many applications in movie production and virtual/augmented reality.

Pose Estimation

Neural Human Video Rendering by Learning Dynamic Textures and Rendering-to-Video Translation

no code implementations14 Jan 2020 Lingjie Liu, Weipeng Xu, Marc Habermann, Michael Zollhoefer, Florian Bernard, Hyeongwoo Kim, Wenping Wang, Christian Theobalt

In this paper, we propose a novel human video synthesis method that approaches these limiting factors by explicitly disentangling the learning of time-coherent fine-scale details from the embedding of the human in 2D screen space.

Image-to-Image Translation Novel View Synthesis +1

XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera

4 code implementations1 Jul 2019 Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Mohamed Elgharib, Pascal Fua, Hans-Peter Seidel, Helge Rhodin, Gerard Pons-Moll, Christian Theobalt

The first stage is a convolutional neural network (CNN) that estimates 2D and 3D pose features along with identity assignments for all visible joints of all individuals. We contribute a new architecture for this CNN, called SelecSLS Net, that uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy.

Monocular 3D Human Pose Estimation

Learning a Disentangled Embedding for Monocular 3D Shape Retrieval and Pose Estimation

1 code implementation24 Dec 2018 Kyaw Zaw Lin, Weipeng Xu, Qianru Sun, Christian Theobalt, Tat-Seng Chua

We propose a novel approach to jointly perform 3D shape retrieval and pose estimation from monocular images. In order to make the method robust to real-world image variations, e. g. complex textures and backgrounds, we learn an embedding space from 3D data that only includes the relevant information, namely the shape and pose.

3D Object Retrieval 3D Shape Classification +2

Neural Rendering and Reenactment of Human Actor Videos

no code implementations11 Sep 2018 Lingjie Liu, Weipeng Xu, Michael Zollhoefer, Hyeongwoo Kim, Florian Bernard, Marc Habermann, Wenping Wang, Christian Theobalt

In contrast to conventional human character rendering, we do not require the availability of a production-quality photo-realistic 3D model of the human, but instead rely on a video sequence in conjunction with a (medium-quality) controllable 3D template model of the person.

Image Generation Neural Rendering

Detailed Human Avatars from Monocular Video

1 code implementation3 Aug 2018 Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, Gerard Pons-Moll

We present a novel method for high detail-preserving human avatar creation from monocular video.

Deep Video Portraits

no code implementations29 May 2018 Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng Xu, Justus Thies, Matthias Nießner, Patrick Pérez, Christian Richardt, Michael Zollhöfer, Christian Theobalt

In order to enable source-to-target video re-animation, we render a synthetic target video with the reconstructed head animation parameters from a source video, and feed it into the trained network -- thus taking full control of the target.

Face Model

A Hybrid Model for Identity Obfuscation by Face Replacement

no code implementations ECCV 2018 Qianru Sun, Ayush Tewari, Weipeng Xu, Mario Fritz, Christian Theobalt, Bernt Schiele

As more and more personal photos are shared and tagged in social media, avoiding privacy risks such as unintended recognition becomes increasingly challenging.

Face Generation

Mo2Cap2: Real-time Mobile 3D Motion Capture with a Cap-mounted Fisheye Camera

no code implementations15 Mar 2018 Weipeng Xu, Avishek Chatterjee, Michael Zollhoefer, Helge Rhodin, Pascal Fua, Hans-Peter Seidel, Christian Theobalt

We tackle these challenges based on a novel lightweight setup that converts a standard baseball cap to a device for high-quality pose estimation based on a single cap-mounted fisheye camera.

3D Pose Estimation

Video Based Reconstruction of 3D People Models

1 code implementation CVPR 2018 Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, Gerard Pons-Moll

This paper describes how to obtain accurate 3D body models and texture of arbitrary people from a single, monocular video in which a person is moving.

3D Reconstruction Surface Reconstruction +1

Single-Shot Multi-Person 3D Pose Estimation From Monocular RGB

6 code implementations9 Dec 2017 Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Srinath Sridhar, Gerard Pons-Moll, Christian Theobalt

Our approach uses novel occlusion-robust pose-maps (ORPM) which enable full body pose inference even under strong partial occlusions by other people and objects in the scene.

3D Pose Estimation

MonoPerfCap: Human Performance Capture from Monocular Video

no code implementations7 Aug 2017 Weipeng Xu, Avishek Chatterjee, Michael Zollhöfer, Helge Rhodin, Dushyant Mehta, Hans-Peter Seidel, Christian Theobalt

Reconstruction from monocular video alone is drastically more challenging, since strong occlusions and the inherent depth ambiguity lead to a highly ill-posed reconstruction problem.

Pose Estimation Video Editing

VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera

1 code implementation3 May 2017 Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Mohammad Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, Christian Theobalt

A real-time kinematic skeleton fitting method uses the CNN output to yield temporally stable 3D global pose reconstructions on the basis of a coherent kinematic skeleton.

3D Human Pose Estimation

Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision

no code implementations29 Nov 2016 Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko, Weipeng Xu, Christian Theobalt

We propose a CNN-based approach for 3D human body pose estimation from single RGB images that addresses the issue of limited generalizability of models trained solely on the starkly limited publicly available 3D pose data.

Monocular 3D Human Pose Estimation Transfer Learning

Deformable 3D Fusion: From Partial Dynamic 3D Observations to Complete 4D Models

no code implementations ICCV 2015 Weipeng Xu, Mathieu Salzmann, Yongtian Wang, Yue Liu

Capturing the 3D motion of dynamic, non-rigid objects has attracted significant attention in computer vision.

Cannot find the paper you are looking for? You can Submit a new open access paper.