1 code implementation • 4 Apr 2025 • Akshara Prabhakar, Zuxin Liu, Weiran Yao, JianGuo Zhang, Ming Zhu, Shiyu Wang, Zhiwei Liu, Tulika Awalgaonkar, Haolin Chen, Thai Hoang, Juan Carlos Niebles, Shelby Heinecke, Huan Wang, Silvio Savarese, Caiming Xiong
We open-source both the synthetic data collected and the trained xLAM-2-fc-r models to advance research in AI agents.
1 code implementation • 28 Mar 2025 • JianGuo Zhang, Thai Hoang, Ming Zhu, Zuxin Liu, Shiyu Wang, Tulika Awalgaonkar, Akshara Prabhakar, Haolin Chen, Weiran Yao, Zhiwei Liu, Juntao Tan, Juan Carlos Niebles, Shelby Heinecke, Huan Wang, Silvio Savarese, Caiming Xiong
However, training large action models remains challenging due to the diversity of agent environments and the complexity of agentic data.
no code implementations • 20 Nov 2024 • Shirley Kokane, Ming Zhu, Tulika Awalgaonkar, JianGuo Zhang, Thai Hoang, Akshara Prabhakar, Zuxin Liu, Tian Lan, Liangwei Yang, Juntao Tan, Rithesh Murthy, Weiran Yao, Zhiwei Liu, Juan Carlos Niebles, Huan Wang, Shelby Heinecke, Caiming Xiong, Silivo Savarese
To solve this problem, we introduce SpecTool, a new benchmark to identify error patterns in LLM output on tool-use tasks.
1 code implementation • 6 Nov 2024 • Haolin Chen, Yihao Feng, Zuxin Liu, Weiran Yao, Akshara Prabhakar, Shelby Heinecke, Ricky Ho, Phil Mui, Silvio Savarese, Caiming Xiong, Huan Wang
Large language models (LLMs) have shown impressive capabilities, but still struggle with complex reasoning tasks requiring multiple steps.
no code implementations • 24 Oct 2024 • Zhiwei Liu, Weiran Yao, JianGuo Zhang, Rithesh Murthy, Liangwei Yang, Zuxin Liu, Tian Lan, Ming Zhu, Juntao Tan, Shirley Kokane, Thai Hoang, Juan Carlos Niebles, Shelby Heinecke, Huan Wang, Silvio Savarese, Caiming Xiong
We introduce the Principled Reasoning and Acting (PRAct) framework, a novel method for learning and enforcing action principles from trajectory data.
1 code implementation • 5 Sep 2024 • JianGuo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Awalgaonkar, Rithesh Murthy, Eric Hu, Zeyuan Chen, ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan Wang, Silvio Savarese, Caiming Xiong
By releasing the xLAM series, we aim to advance the performance of open-source LLMs for autonomous AI agents, potentially accelerating progress and democratizing access to high-performance models for agent tasks.
no code implementations • 13 Aug 2024 • Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei LI, Renze Lou, Jiacheng Xu, Bo Pang, Yingbo Zhou, Shelby Heinecke, Silvio Savarese, Huan Wang, Caiming Xiong
For instance, a group of open-source SWE agents, with a maximum individual resolve rate of 27. 3% on SWE-Bench Lite, can achieve a 34. 3% resolve rate with DEI, making a 25% improvement and beating most closed-source solutions.
no code implementations • 26 Jun 2024 • Zuxin Liu, Thai Hoang, JianGuo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao, Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei Yang, Silvio Savarese, Juan Carlos Niebles, Huan Wang, Shelby Heinecke, Caiming Xiong
The advancement of function-calling agent models requires diverse, reliable, and high-quality datasets.
1 code implementation • 23 Feb 2024 • Zhiwei Liu, Weiran Yao, JianGuo Zhang, Liangwei Yang, Zuxin Liu, Juntao Tan, Prafulla K. Choubey, Tian Lan, Jason Wu, Huan Wang, Shelby Heinecke, Caiming Xiong, Silvio Savarese
Thus, we open-source a new AI agent library, AgentLite, which simplifies this process by offering a lightweight, user-friendly platform for innovating LLM agent reasoning, architectures, and applications with ease.
2 code implementations • 23 Feb 2024 • JianGuo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Ming Zhu, Juntao Tan, Thai Hoang, Zuxin Liu, Liangwei Yang, Yihao Feng, Shirley Kokane, Tulika Awalgaonkar, Juan Carlos Niebles, Silvio Savarese, Shelby Heinecke, Huan Wang, Caiming Xiong
It meticulously standardizes and unifies these trajectories into a consistent format, streamlining the creation of a generic data loader optimized for agent training.
1 code implementation • 25 Jan 2024 • Guangyi Chen, Yifan Shen, Zhenhao Chen, Xiangchen Song, Yuewen Sun, Weiran Yao, Xiao Liu, Kun Zhang
Identifying the underlying time-delayed latent causal processes in sequential data is vital for grasping temporal dynamics and making downstream reasoning.
no code implementations • 19 Jan 2024 • Itai Feigenbaum, Devansh Arpit, Huan Wang, Shelby Heinecke, Juan Carlos Niebles, Weiran Yao, Caiming Xiong, Silvio Savarese
Under appropriate assumptions and conditioning, we can separate the sources or sinks from the remainder of the nodes by comparing their conditional entropy to the unconditional entropy of their noise.
no code implementations • 15 Jan 2024 • Itai Feigenbaum, Devansh Arpit, Huan Wang, Shelby Heinecke, Juan Carlos Niebles, Weiran Yao, Caiming Xiong, Silvio Savarese
On datasets of binary propositions derived from the CounterFact dataset, we show that our method -- without access to subject labels -- performs close to state-of-the-art L\&E methods which has access subject labels.
no code implementations • 18 Dec 2023 • Yu Wang, Zhiwei Liu, JianGuo Zhang, Weiran Yao, Shelby Heinecke, Philip S. Yu
With our principle, we managed to outperform GPT-Turbo-3. 5 on three datasets using 7b models e. g., Vicuna-7b and Openchat-7b on NDCG@10.
1 code implementation • NeurIPS 2023 • Xiangchen Song, Weiran Yao, Yewen Fan, Xinshuai Dong, Guangyi Chen, Juan Carlos Niebles, Eric Xing, Kun Zhang
In unsupervised causal representation learning for sequential data with time-delayed latent causal influences, strong identifiability results for the disentanglement of causally-related latent variables have been established in stationary settings by leveraging temporal structure.
2 code implementations • 11 Aug 2023 • Zhiwei Liu, Weiran Yao, JianGuo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng, Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, ran Xu, Phil Mui, Huan Wang, Caiming Xiong, Silvio Savarese
The massive successes of large language models (LLMs) encourage the emerging exploration of LLM-augmented Autonomous Agents (LAAs).
1 code implementation • 4 Aug 2023 • Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy, Zeyuan Chen, JianGuo Zhang, Devansh Arpit, ran Xu, Phil Mui, Huan Wang, Caiming Xiong, Silvio Savarese
This demonstrates that using policy gradient optimization to improve language agents, for which we believe our work is one of the first, seems promising and can be applied to optimize other models in the agent architecture to enhance agent performances over time.
no code implementations • 18 Jul 2023 • Rithesh Murthy, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Le Xue, Weiran Yao, Yihao Feng, Zeyuan Chen, Akash Gokul, Devansh Arpit, ran Xu, Phil Mui, Huan Wang, Caiming Xiong, Silvio Savarese
In this paper, we propose an enhanced approach for Rapid Exploration and eXploitation for AI Agents called REX.
no code implementations • 10 Jun 2023 • Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor Akinwande, Kun Zhang
In general, without further assumptions, the joint distribution of the features and the label is not identifiable in the target domain.
no code implementations • 10 Mar 2023 • Itai Feigenbaum, Huan Wang, Shelby Heinecke, Juan Carlos Niebles, Weiran Yao, Caiming Xiong, Devansh Arpit
We then provide an analytic average case analysis of the PC Algorithm for causal discovery, as well as a variant of the SGS Algorithm we call UniformSGS.
1 code implementation • 25 Jan 2023 • Devansh Arpit, Matthew Fernandez, Itai Feigenbaum, Weiran Yao, Chenghao Liu, Wenzhuo Yang, Paul Josel, Shelby Heinecke, Eric Hu, Huan Wang, Stephen Hoi, Caiming Xiong, Kun Zhang, Juan Carlos Niebles
Finally, we provide a user interface (UI) that allows users to perform causal analysis on data without coding.
no code implementations • 16 Dec 2022 • Jonathan Francis, Bingqing Chen, Weiran Yao, Eric Nyberg, Jean Oh
The feasibility of collecting a large amount of expert demonstrations has inspired growing research interests in learning-to-drive settings, where models learn by imitating the driving behaviour from experts.
no code implementations • 24 Oct 2022 • Weiran Yao, Guangyi Chen, Kun Zhang
In this work, we establish the identifiability theories of nonparametric latent causal processes from their nonlinear mixtures under fixed temporal causal influences and analyze how distribution changes can further benefit the disentanglement.
1 code implementation • 3 Oct 2022 • Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, Yongming Rao, Kun Zhang
To solve this problem, we propose to apply optimal transport to match the vision and text modalities.
no code implementations • 10 Feb 2022 • Weiran Yao, Guangyi Chen, Kun Zhang
Specifically, the framework factorizes unknown distribution shifts into transition distribution changes caused by fixed dynamics and time-varying latent causal relations, and by global changes in observation.
2 code implementations • 11 Oct 2021 • Weiran Yao, Yuewen Sun, Alex Ho, Changyin Sun, Kun Zhang
In this work, we consider both a nonparametric, nonstationary setting and a parametric setting for the latent processes and propose two provable conditions under which temporally causal latent processes can be identified from their nonlinear mixtures.
2 code implementations • ICLR 2022 • Weiran Yao, Yuewen Sun, Alex Ho, Changyin Sun, Kun Zhang
Our goal is to find time-delayed latent causal variables and identify their relations from temporal measured variables.
no code implementations • 29 Sep 2020 • Weiran Yao, Sean Qian
In this paper, we propose to mine Twitter messages as a probing method to understand the impacts of people's work and rest patterns in the evening/midnight of the previous day to the next-day morning traffic.
no code implementations • 21 May 2020 • Weiran Yao, Sean Qian
The main question to address in this paper is to recommend optimal signal timing plans in real time under incidents by incorporating domain knowledge developed with the traffic signal timing plans tuned for possible incidents, and learning from historical data of both traffic and implemented signals timing.