no code implementations • 22 Jan 2025 • Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, Yuefeng Huang, Xinzhi Wang, Defu Lian, Baoqun Yin, Yasheng Wang, Wu Liu
Normal evaluates function calls in basic scenarios; Special evaluates function calls in scenarios with vague or incomplete instructions; Agent introduces multi-agent interactions to simulate function calling evaluation in real-world multi-turn interactions.
no code implementations • 15 Jan 2025 • Yirong Zeng, Xiao Ding, Yuxian Wang, Weiwen Liu, Wu Ning, Yutai Hou, Xu Huang, Bing Qin, Ting Liu
Augmenting large language models (LLMs) with external tools is a promising approach to enhance their capabilities.
no code implementations • 7 Nov 2024 • Shuai Wang, Weiwen Liu, Jingxuan Chen, Weinan Gan, Xingshan Zeng, Shuai Yu, Xinlong Hao, Kun Shao, Yasheng Wang, Ruiming Tang
This survey consolidates recent research on (M)LLM-based GUI agents, highlighting key innovations in data, frameworks, and applications.
no code implementations • 28 Oct 2024 • Muyan Weng, Yunjia Xi, Weiwen Liu, Bo Chen, Jianghao Lin, Ruiming Tang, Weinan Zhang, Yong Yu
It captures user's preferences and behavior patterns with three modules: a Disentangled Interest Miner to disentangle the user's preferences into interests and disinterests, a Sequential Preference Mixer to learn users' entangled preferences considering the context of feedback, and a Comparison-aware Pattern Extractor to capture user's behavior patterns within each list.
no code implementations • 24 Oct 2024 • Zezhong Wang, Xingshan Zeng, Weiwen Liu, Liangyou Li, Yasheng Wang, Lifeng Shang, Xin Jiang, Qun Liu, Kam-Fai Wong
Data quality assessments demonstrate improvements in the naturalness and coherence of our synthesized dialogues.
1 code implementation • 19 Oct 2024 • Jingxuan Chen, Derek Yuen, Bin Xie, Yuhao Yang, Gongwei Chen, Zhihao Wu, Li Yixing, Xurui Zhou, Weiwen Liu, Shuai Wang, Kaiwen Zhou, Rui Shao, Liqiang Nie, Yasheng Wang, Jianye Hao, Jun Wang, Kun Shao
Smartphone agents are increasingly important for helping users control devices efficiently, with (Multimodal) Large Language Model (MLLM)-based approaches emerging as key contenders.
1 code implementation • 16 Oct 2024 • Yaxi Lu, Shenzhi Yang, Cheng Qian, Guirong Chen, Qinyu Luo, Yesai Wu, Huadong Wang, Xin Cong, Zhong Zhang, Yankai Lin, Weiwen Liu, Yasheng Wang, Zhiyuan Liu, Fangming Liu, Maosong Sun
The labeled data is used to train a reward model that simulates human judgment and serves as an automatic evaluator of the proactiveness of LLM agents.
no code implementations • 2 Sep 2024 • Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan Wu, Xinzhi Wang, Yong liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, Enhong Chen
Function calling significantly extends the application boundary of large language models, where high-quality and diverse training data is critical for unlocking this capability.
no code implementations • 20 Aug 2024 • Yunjia Xi, Weiwen Liu, Jianghao Lin, Muyan Weng, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruiming Tang, Yong Yu, Weinan Zhang
Recommender systems (RSs) play a pervasive role in today's online services, yet their closed-loop nature constrains their access to open-world knowledge.
no code implementations • 13 Aug 2024 • Yusheng Lu, Zhaocheng Du, Xiangyang Li, Xiangyu Zhao, Weiwen Liu, Yichao Wang, Huifeng Guo, Ruiming Tang, Zhenhua Dong, Yongrui Duan
And employs expectation maximization to infer the embedded latent profile, minimizing textual noise by fixing the prompt template.
1 code implementation • 11 Aug 2024 • Yunjia Xi, Hangyu Wang, Bo Chen, Jianghao Lin, Menghui Zhu, Weiwen Liu, Ruiming Tang, Weinan Zhang, Yong Yu
This generation inefficiency stems from the autoregressive nature of LLMs, and a promising direction for acceleration is speculative decoding, a Draft-then-Verify paradigm that increases the number of generated tokens per decoding step.
no code implementations • 14 Jul 2024 • Bo Chen, Xinyi Dai, Huifeng Guo, Wei Guo, Weiwen Liu, Yong liu, Jiarui Qin, Ruiming Tang, Yichao Wang, Chuhan Wu, Yaxiong Wu, Hao Zhang
Recommender systems (RS) are vital for managing information overload and delivering personalized content, responding to users' diverse information needs.
1 code implementation • 6 Jul 2024 • Yunjia Xi, Weiwen Liu, Jianghao Lin, Bo Chen, Ruiming Tang, Weinan Zhang, Yong Yu
The preferences embedded in the user's historical dialogue sessions and the current session exhibit continuity and sequentiality, and we refer to CRSs with this characteristic as sequential CRSs.
no code implementations • 23 Jun 2024 • Zezhong Wang, Xingshan Zeng, Weiwen Liu, YuFei Wang, Liangyou Li, Yasheng Wang, Lifeng Shang, Xin Jiang, Qun Liu, Kam-Fai Wong
To address these questions, we propose a method, namely Chain-of-Probe (CoP), to probe changes in the mind during the model's reasoning.
no code implementations • 18 Jun 2024 • Jingtong Gao, Bo Chen, Xiangyu Zhao, Weiwen Liu, Xiangyang Li, Yichao Wang, Zijian Zhang, Wanyu Wang, Yuyang Ye, Shanru Lin, Huifeng Guo, Ruiming Tang
Reranking is a critical component in recommender systems, playing an essential role in refining the output of recommendation algorithms.
1 code implementation • 17 May 2024 • Xingmei Wang, Weiwen Liu, Xiaolong Chen, Qi Liu, Xu Huang, Yichao Wang, Xiangyang Li, Yasheng Wang, Zhenhua Dong, Defu Lian, Ruiming Tang
This model-agnostic framework can be equipped with plug-and-play textual features, with item-level alignment enhancing the utilization of external information while maintaining training and inference efficiency.
no code implementations • 11 Apr 2024 • Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Defu Lian, Yasheng Wang, Ruiming Tang, Enhong Chen
Concretely, WESE involves decoupling the exploration and exploitation process, employing a cost-effective weak agent to perform exploration tasks for global knowledge.
no code implementations • 25 Mar 2024 • Yunjia Xi, Weiwen Liu, Jianghao Lin, Chuhan Wu, Bo Chen, Ruiming Tang, Weinan Zhang, Yong Yu
The rise of large language models (LLMs) has opened new opportunities in Recommender Systems (RSs) by enhancing user behavior modeling and content understanding.
no code implementations • 7 Mar 2024 • Wenjie Wang, Yang Zhang, Xinyu Lin, Fuli Feng, Weiwen Liu, Yong liu, Xiangyu Zhao, Wayne Xin Zhao, Yang song, Xiangnan He
The rise of generative models has driven significant advancements in recommender systems, leaving unique opportunities for enhancing users' personalized recommendations.
no code implementations • 5 Feb 2024 • Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruiming Tang, Enhong Chen
As Large Language Models (LLMs) have shown significant intelligence, the progress to leverage LLMs as planning modules of autonomous agents has attracted more attention.
1 code implementation • 30 Jan 2024 • Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng, Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng Xu, Qun Liu
The recent trend of using Large Language Models (LLMs) as tool agents in real-world applications underscores the necessity for comprehensive evaluations of their capabilities, particularly in complex scenarios involving planning, creating, and using tools.
no code implementations • 21 Jan 2024 • Jiarui Qin, Weiwen Liu, Ruiming Tang, Weinan Zhang, Yong Yu
A personalized knowledge adaptation unit is devised to effectively exploit the information from the knowledge base by adapting the retrieved knowledge to the target samples.
no code implementations • 7 Oct 2023 • Zhenhua Dong, Jieming Zhu, Weiwen Liu, Ruiming Tang
Huawei's vision and mission is to build a fully connected intelligent world.
1 code implementation • 10 Aug 2023 • Wentao Ning, Xiao Yan, Weiwen Liu, Reynold Cheng, Rui Zhang, Bo Tang
We propose a new MDR method named EDDA with two key components, i. e., embedding disentangling recommender and domain alignment, to tackle the two challenges respectively.
1 code implementation • 19 Jun 2023 • Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruiming Tang, Weinan Zhang, Rui Zhang, Yong Yu
In this work, we propose an Open-World Knowledge Augmented Recommendation Framework with Large Language Models, dubbed KAR, to acquire two types of external knowledge from LLMs -- the reasoning knowledge on user preferences and the factual knowledge on items.
1 code implementation • 9 Jun 2023 • Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Hao Zhang, Yong liu, Chuhan Wu, Xiangyang Li, Chenxu Zhu, Huifeng Guo, Yong Yu, Ruiming Tang, Weinan Zhang
In this paper, we conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
no code implementations • 7 Jun 2023 • Xianyu Chen, Jian Shen, Wei Xia, Jiarui Jin, Yakun Song, Weinan Zhang, Weiwen Liu, Menghui Zhu, Ruiming Tang, Kai Dong, Dingyin Xia, Yong Yu
Noticing that existing approaches fail to consider the correlations of concepts in the path, we propose a novel framework named Set-to-Sequence Ranking-based Concept-aware Learning Path Recommendation (SRC), which formulates the recommendation task under a set-to-sequence paradigm.
no code implementations • 22 Feb 2023 • ZhiCheng He, Weiwen Liu, Wei Guo, Jiarui Qin, Yingxue Zhang, Yaochen Hu, Ruiming Tang
Besides, we elaborate on the industrial practices of UBM methods with the hope of providing insights into the application value of existing UBM solutions.
1 code implementation • 17 Nov 2022 • Yunjia Xi, Jianghao Lin, Weiwen Liu, Xinyi Dai, Weinan Zhang, Rui Zhang, Ruiming Tang, Yong Yu
Moreover, simply applying a shared network for all the lists fails to capture the commonalities and distinctions in user behaviors on different lists.
1 code implementation • 17 Jun 2022 • Lingyue Fu, Jianghao Lin, Weiwen Liu, Ruiming Tang, Weinan Zhang, Rui Zhang, Yong Yu
However, with the development of user interface (UI) design, the layout of displayed items on a result page tends to be multi-block (i. e., multi-list) style instead of a single list, which requires different assumptions to model user behaviors more accurately.
1 code implementation • Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval 2021 • Jianghao Lin, Weiwen Liu, Xinyi Dai, Weinan Zhang, Shuai Li, Ruiming Tang, Xiuqiang He, Jianye Hao, Yong Yu
To better exploit search logs and model users' behavior patterns, numerous click models are proposed to extract users' implicit interaction feedback.
1 code implementation • 20 Apr 2022 • Yunjia Xi, Weiwen Liu, Jieming Zhu, Xilong Zhao, Xinyi Dai, Ruiming Tang, Weinan Zhang, Rui Zhang, Yong Yu
MIR combines low-level cross-item interaction and high-level set-to-list interaction, where we view the candidate items to be reranked as a set and the users' behavior history in chronological order as a list.
no code implementations • 23 Mar 2022 • Yi Li, Jieming Zhu, Weiwen Liu, Liangcai Su, Guohao Cai, Qi Zhang, Ruiming Tang, Xi Xiao, Xiuqiang He
Specifically, PEAR not only captures feature-level and item-level interactions, but also models item contexts from both the initial ranking list and the historical clicked item list.
1 code implementation • 14 Feb 2022 • Weiwen Liu, Yunjia Xi, Jiarui Qin, Fei Sun, Bo Chen, Weinan Zhang, Rui Zhang, Ruiming Tang
As the final stage of the multi-stage recommender system (MRS), re-ranking directly affects user experience and satisfaction by rearranging the input ranking lists, and thereby plays a critical role in MRS. With the advances in deep learning, neural re-ranking has become a trending topic and been widely applied in industrial applications.
no code implementations • 18 Oct 2021 • Yunjia Xi, Weiwen Liu, Xinyi Dai, Ruiming Tang, Weinan Zhang, Qing Liu, Xiuqiang He, Yong Yu
As a critical task for large-scale commercial recommender systems, reranking has shown the potential of improving recommendation results by uncovering mutual influence among items.
1 code implementation • 11 Aug 2021 • Jiarui Qin, Weinan Zhang, Rong Su, Zhirong Liu, Weiwen Liu, Ruiming Tang, Xiuqiang He, Yong Yu
Prediction over tabular data is an essential task in many data science applications such as recommender systems, online advertising, medical treatment, etc.
no code implementations • 25 Jun 2021 • Weiwen Liu, Feng Liu, Ruiming Tang, Ben Liao, Guangyong Chen, Pheng Ann Heng
Fairness in recommendation has attracted increasing attention due to bias and discrimination possibly caused by traditional recommenders.
1 code implementation • 13 Apr 2021 • Xinyi Dai, Jianghao Lin, Weinan Zhang, Shuai Li, Weiwen Liu, Ruiming Tang, Xiuqiang He, Jianye Hao, Jun Wang, Yong Yu
Modern information retrieval systems, including web search, ads placement, and recommender systems, typically rely on learning from user feedback.
no code implementations • 21 May 2020 • Nasim Sonboli, Farzad Eskandanian, Robin Burke, Weiwen Liu, Bamshad Mobasher
In this paper, we present a re-ranking approach to fairness-aware recommendation that learns individual preferences across multiple fairness dimensions and uses them to enhance provider fairness in recommendation results.
no code implementations • 25 Apr 2020 • Feng Liu, Weiwen Liu, Xutao Li, Yunming Ye
Then, based on the inter-sequence correlation encoder, we build GRU network and attention network in the intra-sequence correlation encoder to model the item sequential correlation within each individual sequence and temporal dynamics for predicting users' preferences over candidate items.
1 code implementation • 30 Dec 2019 • Yun He, Yin Zhang, Weiwen Liu, James Caverlee
Complementary to methods that exploit specific content patterns (e. g., as in song-based playlists that rely on audio features), the proposed approach models the consistency of item lists based on human curation patterns, and so can be deployed across a wide range of varying item types (e. g., videos, images, books).
no code implementations • 26 Nov 2019 • Xiaojin Zhang, Shuai Li, Weiwen Liu, Shengyu Zhang
The problem of multi-armed bandits (MAB) asks to make sequential decisions while balancing between exploitation and exploration, and have been successfully applied to a wide range of practical scenarios.
no code implementations • 10 Sep 2019 • Yitong Meng, Xinyan Dai, Xiao Yan, James Cheng, Weiwen Liu, Benben Liao, Jun Guo, Guangyong Chen
Collaborative filtering, a widely-used recommendation technique, predicts a user's preference by aggregating the ratings from similar users.
no code implementations • 10 Sep 2019 • Yitong Meng, Guangyong Chen, Benben Liao, Jun Guo, Weiwen Liu
We further adopt the idea of CF and propose Wasserstein CF (WCF) to improve the recommendation performance on cold-start items.
1 code implementation • 22 Jun 2019 • Guangyong Chen, Pengfei Chen, Chang-Yu Hsieh, Chee-Kong Lee, Benben Liao, Renjie Liao, Weiwen Liu, Jiezhong Qiu, Qiming Sun, Jie Tang, Richard Zemel, Shengyu Zhang
We introduce a new molecular dataset, named Alchemy, for developing machine learning models useful in chemistry and material science.
no code implementations • 13 Jun 2019 • Pengfei Chen, Weiwen Liu, Chang-Yu Hsieh, Guangyong Chen, Shengyu Zhang
The IGNN model is based on an elegant and fundamental idea in information theory as explained in the main text, and it could be easily generalized beyond the contexts of molecular graphs considered in this work.