Search Results for author: Weize Chen

Found 16 papers, 14 papers with code

D-Bot: Database Diagnosis System using Large Language Models

1 code implementation3 Dec 2023 Xuanhe Zhou, Guoliang Li, Zhaoyan Sun, Zhiyuan Liu, Weize Chen, Jianming Wu, Jiesi Liu, Ruohang Feng, Guoyang Zeng

Database administrators (DBAs) play an important role in managing, maintaining and optimizing database systems.

Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared Pre-trained Language Models

no code implementations19 Oct 2023 Weize Chen, Xiaoyue Xu, Xu Han, Yankai Lin, Ruobing Xie, Zhiyuan Liu, Maosong Sun, Jie zhou

Parameter-shared pre-trained language models (PLMs) have emerged as a successful approach in resource-constrained environments, enabling substantial reductions in model storage and memory costs without significant performance compromise.

AgentVerse: Facilitating Multi-Agent Collaboration and Exploring Emergent Behaviors

1 code implementation21 Aug 2023 Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong Sun, Jie zhou

Autonomous agents empowered by Large Language Models (LLMs) have undergone significant improvements, enabling them to generalize across a broad spectrum of tasks.

ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate

1 code implementation14 Aug 2023 Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, Zhiyuan Liu

Text evaluation has historically posed significant challenges, often demanding substantial labor and time cost.

Text Generation

Communicative Agents for Software Development

1 code implementation16 Jul 2023 Chen Qian, Xin Cong, Wei Liu, Cheng Yang, Weize Chen, Yusheng Su, Yufan Dang, Jiahao Li, Juyuan Xu, Dahai Li, Zhiyuan Liu, Maosong Sun

At the core of this paradigm lies ChatDev, a virtual chat-powered software development company that mirrors the established waterfall model, meticulously dividing the development process into four distinct chronological stages: designing, coding, testing, and documenting.

Decision Making

Stochastic Bridges as Effective Regularizers for Parameter-Efficient Tuning

1 code implementation28 May 2023 Weize Chen, Xu Han, Yankai Lin, Zhiyuan Liu, Maosong Sun, Jie zhou

Since it is non-trivial to directly model the intermediate states and design a running cost function, we propose to use latent stochastic bridges to regularize the intermediate states and use the regularization as the running cost of PETs.

Exploring Mode Connectivity for Pre-trained Language Models

1 code implementation25 Oct 2022 Yujia Qin, Cheng Qian, Jing Yi, Weize Chen, Yankai Lin, Xu Han, Zhiyuan Liu, Maosong Sun, Jie zhou

(3) How does the PLM's task knowledge change along the path connecting two minima?

Different Tunes Played with Equal Skill: Exploring a Unified Optimization Subspace for Delta Tuning

1 code implementation24 Oct 2022 Jing Yi, Weize Chen, Yujia Qin, Yankai Lin, Ning Ding, Xu Han, Zhiyuan Liu, Maosong Sun, Jie zhou

To fathom the mystery, we hypothesize that the adaptations of different DETs could all be reparameterized as low-dimensional optimizations in a unified optimization subspace, which could be found by jointly decomposing independent solutions of different DETs.

GACT: Activation Compressed Training for Generic Network Architectures

1 code implementation22 Jun 2022 Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen, Zhiyuan Liu, Jie Tang, Joey Gonzalez, Michael Mahoney, Alvin Cheung

Training large neural network (NN) models requires extensive memory resources, and Activation Compressed Training (ACT) is a promising approach to reduce training memory footprint.

Exploring Universal Intrinsic Task Subspace via Prompt Tuning

1 code implementation15 Oct 2021 Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin, Ning Ding, Jing Yi, Weize Chen, Zhiyuan Liu, Juanzi Li, Lei Hou, Peng Li, Maosong Sun, Jie zhou

In the experiments, we study diverse few-shot NLP tasks and surprisingly find that in a 250-dimensional subspace found with 100 tasks, by only tuning 250 free parameters, we can recover 97% and 83% of the full prompt tuning performance for 100 seen tasks (using different training data) and 20 unseen tasks, respectively, showing great generalization ability of the found intrinsic task subspace.

Fully Hyperbolic Neural Networks

1 code implementation ACL 2022 Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, Jie zhou

Hyperbolic neural networks have shown great potential for modeling complex data.

Quantifying Similarity between Relations with Fact Distribution

1 code implementation ACL 2019 Weize Chen, Hao Zhu, Xu Han, Zhiyuan Liu, Maosong Sun

We introduce a conceptually simple and effective method to quantify the similarity between relations in knowledge bases.

General Classification Open Information Extraction

Cannot find the paper you are looking for? You can Submit a new open access paper.