1 code implementation • ACL 2022 • Xu Han, Yuqi Luo, Weize Chen, Zhiyuan Liu, Maosong Sun, Zhou Botong, Hao Fei, Suncong Zheng
In this paper, we propose a cross-lingual contrastive learning framework to learn FGET models for low-resource languages.
1 code implementation • 3 Dec 2023 • Xuanhe Zhou, Guoliang Li, Zhaoyan Sun, Zhiyuan Liu, Weize Chen, Jianming Wu, Jiesi Liu, Ruohang Feng, Guoyang Zeng
Database administrators (DBAs) play an important role in managing, maintaining and optimizing database systems.
no code implementations • 19 Oct 2023 • Weize Chen, Xiaoyue Xu, Xu Han, Yankai Lin, Ruobing Xie, Zhiyuan Liu, Maosong Sun, Jie zhou
Parameter-shared pre-trained language models (PLMs) have emerged as a successful approach in resource-constrained environments, enabling substantial reductions in model storage and memory costs without significant performance compromise.
1 code implementation • 21 Aug 2023 • Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong Sun, Jie zhou
Autonomous agents empowered by Large Language Models (LLMs) have undergone significant improvements, enabling them to generalize across a broad spectrum of tasks.
1 code implementation • 14 Aug 2023 • Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, Zhiyuan Liu
Text evaluation has historically posed significant challenges, often demanding substantial labor and time cost.
1 code implementation • 16 Jul 2023 • Chen Qian, Xin Cong, Wei Liu, Cheng Yang, Weize Chen, Yusheng Su, Yufan Dang, Jiahao Li, Juyuan Xu, Dahai Li, Zhiyuan Liu, Maosong Sun
At the core of this paradigm lies ChatDev, a virtual chat-powered software development company that mirrors the established waterfall model, meticulously dividing the development process into four distinct chronological stages: designing, coding, testing, and documenting.
1 code implementation • 28 May 2023 • Weize Chen, Xu Han, Yankai Lin, Zhiyuan Liu, Maosong Sun, Jie zhou
Since it is non-trivial to directly model the intermediate states and design a running cost function, we propose to use latent stochastic bridges to regularize the intermediate states and use the regularization as the running cost of PETs.
3 code implementations • 17 Apr 2023 • Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, Maosong Sun
Considering the lack of a systematic tool learning evaluation in prior works, we experiment with 18 representative tools and show the potential of current foundation models in skillfully utilizing tools.
1 code implementation • 25 Oct 2022 • Yujia Qin, Cheng Qian, Jing Yi, Weize Chen, Yankai Lin, Xu Han, Zhiyuan Liu, Maosong Sun, Jie zhou
(3) How does the PLM's task knowledge change along the path connecting two minima?
1 code implementation • 24 Oct 2022 • Jing Yi, Weize Chen, Yujia Qin, Yankai Lin, Ning Ding, Xu Han, Zhiyuan Liu, Maosong Sun, Jie zhou
To fathom the mystery, we hypothesize that the adaptations of different DETs could all be reparameterized as low-dimensional optimizations in a unified optimization subspace, which could be found by jointly decomposing independent solutions of different DETs.
1 code implementation • 22 Jun 2022 • Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen, Zhiyuan Liu, Jie Tang, Joey Gonzalez, Michael Mahoney, Alvin Cheung
Training large neural network (NN) models requires extensive memory resources, and Activation Compressed Training (ACT) is a promising approach to reduce training memory footprint.
no code implementations • 26 Mar 2022 • Sha Yuan, Hanyu Zhao, Shuai Zhao, Jiahong Leng, Yangxiao Liang, Xiaozhi Wang, Jifan Yu, Xin Lv, Zhou Shao, Jiaao He, Yankai Lin, Xu Han, Zhenghao Liu, Ning Ding, Yongming Rao, Yizhao Gao, Liang Zhang, Ming Ding, Cong Fang, Yisen Wang, Mingsheng Long, Jing Zhang, Yinpeng Dong, Tianyu Pang, Peng Cui, Lingxiao Huang, Zheng Liang, HuaWei Shen, HUI ZHANG, Quanshi Zhang, Qingxiu Dong, Zhixing Tan, Mingxuan Wang, Shuo Wang, Long Zhou, Haoran Li, Junwei Bao, Yingwei Pan, Weinan Zhang, Zhou Yu, Rui Yan, Chence Shi, Minghao Xu, Zuobai Zhang, Guoqiang Wang, Xiang Pan, Mengjie Li, Xiaoyu Chu, Zijun Yao, Fangwei Zhu, Shulin Cao, Weicheng Xue, Zixuan Ma, Zhengyan Zhang, Shengding Hu, Yujia Qin, Chaojun Xiao, Zheni Zeng, Ganqu Cui, Weize Chen, Weilin Zhao, Yuan YAO, Peng Li, Wenzhao Zheng, Wenliang Zhao, Ziyi Wang, Borui Zhang, Nanyi Fei, Anwen Hu, Zenan Ling, Haoyang Li, Boxi Cao, Xianpei Han, Weidong Zhan, Baobao Chang, Hao Sun, Jiawen Deng, Chujie Zheng, Juanzi Li, Lei Hou, Xigang Cao, Jidong Zhai, Zhiyuan Liu, Maosong Sun, Jiwen Lu, Zhiwu Lu, Qin Jin, Ruihua Song, Ji-Rong Wen, Zhouchen Lin, LiWei Wang, Hang Su, Jun Zhu, Zhifang Sui, Jiajun Zhang, Yang Liu, Xiaodong He, Minlie Huang, Jian Tang, Jie Tang
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm.
1 code implementation • 14 Mar 2022 • Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei Chen, Yang Liu, Jie Tang, Juanzi Li, Maosong Sun
This necessitates a new branch of research focusing on the parameter-efficient adaptation of PLMs, dubbed as delta tuning in this paper.
1 code implementation • 15 Oct 2021 • Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin, Ning Ding, Jing Yi, Weize Chen, Zhiyuan Liu, Juanzi Li, Lei Hou, Peng Li, Maosong Sun, Jie zhou
In the experiments, we study diverse few-shot NLP tasks and surprisingly find that in a 250-dimensional subspace found with 100 tasks, by only tuning 250 free parameters, we can recover 97% and 83% of the full prompt tuning performance for 100 seen tasks (using different training data) and 20 unseen tasks, respectively, showing great generalization ability of the found intrinsic task subspace.
1 code implementation • ACL 2022 • Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, Jie zhou
Hyperbolic neural networks have shown great potential for modeling complex data.
1 code implementation • ACL 2019 • Weize Chen, Hao Zhu, Xu Han, Zhiyuan Liu, Maosong Sun
We introduce a conceptually simple and effective method to quantify the similarity between relations in knowledge bases.