no code implementations • ROCLING 2022 • Wen-Chao Yeh, Yu-Lun Hsieh, Yung-Chun Chang, Wen-Lian Hsu
This study aims to evaluate three most popular word segmentation tool for a large Traditional Chinese corpus in terms of their efficiency, resource consumption, and cost.
1 code implementation • 6 Sep 2019 • Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, Cho-Jui Hsieh
This work proposes a novel algorithm to generate natural language adversarial input for text classification models, in order to investigate the robustness of these models.
no code implementations • ACL 2019 • Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, Cho-Jui Hsieh
This work examines the robustness of self-attentive neural networks against adversarial input perturbations.
no code implementations • 29 Jan 2019 • Ming-Siang Huang, Po-Ting Lai, Richard Tzong-Han Tsai, Wen-Lian Hsu
Moreover, the cross-validation test is carried out which we train the NER systems on JNLPBA/Revised JNLPBA corpora and access the performance in both protein-protein interaction extraction (PPIE) and biomedical event extraction (BEE) corpora to confirm that the newly refined Revised JNLPBA is a competent NER corpus in biomedical relation application.
no code implementations • IJCNLP 2017 • Zheng-Wen Lin, Yung-Chun Chang, Chen-Ann Wang, Yu-Lun Hsieh, Wen-Lian Hsu
Sentiment lexicon is very helpful in dimensional sentiment applications.
no code implementations • IJCNLP 2017 • Yu-Lun Hsieh, Yung-Chun Chang, Nai-Wen Chang, Wen-Lian Hsu
In this paper, we propose a recurrent neural network model for identifying protein-protein interactions in biomedical literature.
no code implementations • WS 2017 • Yi-Jie Huang, Chu Hsien Su, Yi-Chun Chang, Tseng-Hsin Ting, Tzu-Yuan Fu, Rou-Min Wang, Hong-Jie Dai, Yung-Chun Chang, Jitendra Jonnagaddala, Wen-Lian Hsu
In this study, we developed a tree kernel-based model to classify tweets conveying pregnancy related information using this corpus.
no code implementations • WS 2017 • Neha Warikoo, Yung-Chun Chang, Wen-Lian Hsu
In this work, we introduce a novel feature engineering approach named {``}algebraic invariance{''} to identify discriminative patterns for learning relation pair features for the chemical-disease relation (CDR) task of BioCreative V. Our method exploits the existing structural similarity of the key concepts of relation descriptions from the CDR corpus to generate robust linguistic patterns for SVM tree kernel-based learning.
no code implementations • IJCNLP 2017 • Yu-Lun Hsieh, Yung-Chun Chang, Yi-Jie Huang, Shu-Hao Yeh, Chun-Hung Chen, Wen-Lian Hsu
Part-of-speech (POS) tagging and named entity recognition (NER) are crucial steps in natural language processing.
1 code implementation • 3 Jan 2016 • Yuxiang Jiang, Tal Ronnen Oron, Wyatt T Clark, Asma R Bankapur, Daniel D'Andrea, Rosalba Lepore, Christopher S Funk, Indika Kahanda, Karin M Verspoor, Asa Ben-Hur, Emily Koo, Duncan Penfold-Brown, Dennis Shasha, Noah Youngs, Richard Bonneau, Alexandra Lin, Sayed ME Sahraeian, Pier Luigi Martelli, Giuseppe Profiti, Rita Casadio, Renzhi Cao, Zhaolong Zhong, Jianlin Cheng, Adrian Altenhoff, Nives Skunca, Christophe Dessimoz, Tunca Dogan, Kai Hakala, Suwisa Kaewphan, Farrokh Mehryary, Tapio Salakoski, Filip Ginter, Hai Fang, Ben Smithers, Matt Oates, Julian Gough, Petri Törönen, Patrik Koskinen, Liisa Holm, Ching-Tai Chen, Wen-Lian Hsu, Kevin Bryson, Domenico Cozzetto, Federico Minneci, David T Jones, Samuel Chapman, Dukka B K. C., Ishita K Khan, Daisuke Kihara, Dan Ofer, Nadav Rappoport, Amos Stern, Elena Cibrian-Uhalte, Paul Denny, Rebecca E Foulger, Reija Hieta, Duncan Legge, Ruth C Lovering, Michele Magrane, Anna N Melidoni, Prudence Mutowo-Meullenet, Klemens Pichler, Aleksandra Shypitsyna, Biao Li, Pooya Zakeri, Sarah ElShal, Léon-Charles Tranchevent, Sayoni Das, Natalie L Dawson, David Lee, Jonathan G Lees, Ian Sillitoe, Prajwal Bhat, Tamás Nepusz, Alfonso E Romero, Rajkumar Sasidharan, Haixuan Yang, Alberto Paccanaro, Jesse Gillis, Adriana E Sedeño-Cortés, Paul Pavlidis, Shou Feng, Juan M Cejuela, Tatyana Goldberg, Tobias Hamp, Lothar Richter, Asaf Salamov, Toni Gabaldon, Marina Marcet-Houben, Fran Supek, Qingtian Gong, Wei Ning, Yuanpeng Zhou, Weidong Tian, Marco Falda, Paolo Fontana, Enrico Lavezzo, Stefano Toppo, Carlo Ferrari, Manuel Giollo, Damiano Piovesan, Silvio Tosatto, Angela del Pozo, José M Fernández, Paolo Maietta, Alfonso Valencia, Michael L Tress, Alfredo Benso, Stefano Di Carlo, Gianfranco Politano, Alessandro Savino, Hafeez Ur Rehman, Matteo Re, Marco Mesiti, Giorgio Valentini, Joachim W Bargsten, Aalt DJ van Dijk, Branislava Gemovic, Sanja Glisic, Vladmir Perovic, Veljko Veljkovic, Nevena Veljkovic, Danillo C Almeida-e-Silva, Ricardo ZN Vencio, Malvika Sharan, Jörg Vogel, Lakesh Kansakar, Shanshan Zhang, Slobodan Vucetic, Zheng Wang, Michael JE Sternberg, Mark N Wass, Rachael P Huntley, Maria J Martin, Claire O'Donovan, Peter N. Robinson, Yves Moreau, Anna Tramontano, Patricia C Babbitt, Steven E Brenner, Michal Linial, Christine A Orengo, Burkhard Rost, Casey S Greene, Sean D Mooney, Iddo Friedberg, Predrag Radivojac
To review progress in the field, the analysis also compared the best methods participating in CAFA1 to those of CAFA2.
Quantitative Methods