no code implementations • 24 Dec 2024 • Mingda Chen, Yang Li, Karthik Padthe, Rulin Shao, Alicia Sun, Luke Zettlemoyer, Gargi Gosh, Wen-tau Yih
Large language models can generate factually inaccurate content, a problem known as hallucination.
1 code implementation • 12 Dec 2024 • Vincent-Pierre Berges, Barlas Oğuz, Daniel Haziza, Wen-tau Yih, Luke Zettlemoyer, Gargi Ghosh
We provide a fully parallelizable memory layer implementation, demonstrating scaling laws with up to 128B memory parameters, pretrained to 1 trillion tokens, comparing to base models with up to 8B parameters.
3 code implementations • 21 Nov 2024 • Akari Asai, Jacqueline He, Rulin Shao, Weijia Shi, Amanpreet Singh, Joseph Chee Chang, Kyle Lo, Luca Soldaini, Sergey Feldman, Mike D'Arcy, David Wadden, Matt Latzke, Minyang Tian, Pan Ji, Shengyan Liu, Hao Tong, Bohao Wu, Yanyu Xiong, Luke Zettlemoyer, Graham Neubig, Dan Weld, Doug Downey, Wen-tau Yih, Pang Wei Koh, Hannaneh Hajishirzi
Scientific progress depends on researchers' ability to synthesize the growing body of literature.
no code implementations • 7 Nov 2024 • Weixin Liang, Lili Yu, Liang Luo, Srinivasan Iyer, Ning Dong, Chunting Zhou, Gargi Ghosh, Mike Lewis, Wen-tau Yih, Luke Zettlemoyer, Xi Victoria Lin
In the Transfusion setting, where text and image are trained with different objectives, a 7B MoT model matches the image modality performance of the dense baseline with one third of the FLOPs, and a 760M MoT model outperforms a 1. 4B dense baseline across key image generation metrics.
1 code implementation • 22 Oct 2024 • Hu Xu, Po-Yao Huang, Xiaoqing Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Wen-tau Yih, Shang-Wen Li, Saining Xie, Christoph Feichtenhofer
This paper focuses on creating synthetic data to improve the quality of image captions.
1 code implementation • 7 Jun 2024 • Xiao Yang, Kai Sun, Hao Xin, Yushi Sun, Nikita Bhalla, Xiangsen Chen, Sajal Choudhary, Rongze Daniel Gui, Ziran Will Jiang, Ziyu Jiang, Lingkun Kong, Brian Moran, Jiaqi Wang, Yifan Ethan Xu, An Yan, Chenyu Yang, Eting Yuan, Hanwen Zha, Nan Tang, Lei Chen, Nicolas Scheffer, Yue Liu, Nirav Shah, Rakesh Wanga, Anuj Kumar, Wen-tau Yih, Xin Luna Dong
To bridge this gap, we introduce the Comprehensive RAG Benchmark (CRAG), a factual question answering benchmark of 4, 409 question-answer pairs and mock APIs to simulate web and Knowledge Graph (KG) search.
no code implementations • 29 May 2024 • Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen, Jimmy Lin, Wen-tau Yih, Xi Victoria Lin
Large language models (LLMs) often hallucinate and lack the ability to provide attribution for their generations.
no code implementations • 2 May 2024 • Sheng-Chieh Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Wen-tau Yih, Xilun Chen
Furthermore, reward functions used in standard RL can also encourage hallucination, because it guides the LLM to provide more helpful responses on a diverse set of instructions, often preferring longer and more detailed responses.
1 code implementation • CVPR 2024 • Jiawei Ma, Po-Yao Huang, Saining Xie, Shang-Wen Li, Luke Zettlemoyer, Shih-Fu Chang, Wen-tau Yih, Hu Xu
The success of contrastive language-image pretraining (CLIP) relies on the supervision from the pairing between images and captions, which tends to be noisy in web-crawled data.
1 code implementation • 12 Mar 2024 • Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière, Jacob Kahn, Daniel Li, Wen-tau Yih, Jason Weston, Xian Li
We investigate efficient methods for training Large Language Models (LLMs) to possess capabilities in multiple specialized domains, such as coding, math reasoning and world knowledge.
Ranked #38 on Common Sense Reasoning on WinoGrande
no code implementations • 5 Mar 2024 • Akari Asai, Zexuan Zhong, Danqi Chen, Pang Wei Koh, Luke Zettlemoyer, Hannaneh Hajishirzi, Wen-tau Yih
Parametric language models (LMs), which are trained on vast amounts of web data, exhibit remarkable flexibility and capability.
1 code implementation • 20 Feb 2024 • Zhengbao Jiang, Zhiqing Sun, Weijia Shi, Pedro Rodriguez, Chunting Zhou, Graham Neubig, Xi Victoria Lin, Wen-tau Yih, Srinivasan Iyer
The standard recipe for doing so involves continued pre-training on new documents followed by instruction-tuning on question-answer (QA) pairs.
1 code implementation • 26 May 2023 • Yung-Sung Chuang, Wei Fang, Shang-Wen Li, Wen-tau Yih, James Glass
We propose EAR, a query Expansion And Reranking approach for improving passage retrieval, with the application to open-domain question answering.
4 code implementations • 23 May 2023 • Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, Luke Zettlemoyer, Hannaneh Hajishirzi
Evaluating the factuality of long-form text generated by large language models (LMs) is non-trivial because (1) generations often contain a mixture of supported and unsupported pieces of information, making binary judgments of quality inadequate, and (2) human evaluation is time-consuming and costly.
no code implementations • 23 May 2023 • Mingda Chen, Xilun Chen, Wen-tau Yih
Few-shot learning for open domain multi-hop question answering typically relies on the incontext learning capability of large language models (LLMs).
2 code implementations • 14 May 2023 • Hao Yan, Saurabh Srivastava, Yintao Tai, Sida I. Wang, Wen-tau Yih, Ziyu Yao
In this work, we propose a new task of simulating NL feedback for interactive semantic parsing.
no code implementations • 9 May 2023 • Imanol Schlag, Sainbayar Sukhbaatar, Asli Celikyilmaz, Wen-tau Yih, Jason Weston, Jürgen Schmidhuber, Xian Li
In recent years, large pre-trained language models (LLMs) have demonstrated the ability to follow instructions and perform novel tasks from a few examples.
no code implementations • 4 May 2023 • Xilun Chen, Lili Yu, Wenhan Xiong, Barlas Oğuz, Yashar Mehdad, Wen-tau Yih
We propose a new two-stage pre-training framework for video-to-text generation tasks such as video captioning and video question answering: A generative encoder-decoder model is first jointly pre-trained on massive image-text data to learn fundamental vision-language concepts, and then adapted to video data in an intermediate video-text pre-training stage to learn video-specific skills such as spatio-temporal reasoning.
1 code implementation • 16 Feb 2023 • Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen-tau Yih, Sida I. Wang, Xi Victoria Lin
The advent of large language models trained on code (code LLMs) has led to significant progress in language-to-code generation.
Ranked #2 on Semantic Parsing on spider
1 code implementation • 15 Feb 2023 • Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Yashar Mehdad, Wen-tau Yih, Xilun Chen
We hence propose a new DA approach with diverse queries and sources of supervision to progressively train a generalizable DR. As a result, DRAGON, our dense retriever trained with diverse augmentation, is the first BERT-base-sized DR to achieve state-of-the-art effectiveness in both supervised and zero-shot evaluations and even competes with models using more complex late interaction (ColBERTv2 and SPLADE++).
2 code implementations • 30 Jan 2023 • Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettlemoyer, Wen-tau Yih
We introduce REPLUG, a retrieval-augmented language modeling framework that treats the language model (LM) as a black box and augments it with a tuneable retrieval model.
Ranked #15 on Question Answering on Natural Questions
4 code implementations • 19 Dec 2022 • Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A. Smith, Luke Zettlemoyer, Tao Yu
Our analysis suggests that INSTRUCTOR is robust to changes in instructions, and that instruction finetuning mitigates the challenge of training a single model on diverse datasets.
1 code implementation • 2 Dec 2022 • Sewon Min, Weijia Shi, Mike Lewis, Xilun Chen, Wen-tau Yih, Hannaneh Hajishirzi, Luke Zettlemoyer
Existing language models (LMs) predict tokens with a softmax over a finite vocabulary, which can make it difficult to predict rare tokens or phrases.
1 code implementation • 29 Nov 2022 • Tianyi Zhang, Tao Yu, Tatsunori B. Hashimoto, Mike Lewis, Wen-tau Yih, Daniel Fried, Sida I. Wang
Sampling diverse programs from a code language model and reranking with model likelihood is a popular method for code generation but it is prone to preferring degenerate solutions.
Ranked #30 on Code Generation on MBPP
no code implementations • 22 Nov 2022 • Michihiro Yasunaga, Armen Aghajanyan, Weijia Shi, Rich James, Jure Leskovec, Percy Liang, Mike Lewis, Luke Zettlemoyer, Wen-tau Yih
To integrate knowledge in a more scalable and modular way, we propose a retrieval-augmented multimodal model, which enables a base multimodal model (generator) to refer to relevant text and images fetched by a retriever from external memory (e. g., documents on the web).
Ranked #8 on Image Captioning on MS COCO
1 code implementation • 18 Nov 2022 • Minghan Li, Sheng-Chieh Lin, Barlas Oguz, Asish Ghoshal, Jimmy Lin, Yashar Mehdad, Wen-tau Yih, Xilun Chen
In this paper, we unify different multi-vector retrieval models from a token routing viewpoint and propose conditional token interaction via dynamic lexical routing, namely CITADEL, for efficient and effective multi-vector retrieval.
1 code implementation • 16 Nov 2022 • Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen, Gautier Izacard, Sebastian Riedel, Hannaneh Hajishirzi, Wen-tau Yih
We study the problem of retrieval with instructions, where users of a retrieval system explicitly describe their intent along with their queries.
1 code implementation • 25 Oct 2022 • Victor Zhong, Weijia Shi, Wen-tau Yih, Luke Zettlemoyer
Moreover, existing models are not robust to variations in question constraints, but can be made more robust by tuning on clusters of related questions.
1 code implementation • 21 Sep 2022 • Wenhan Xiong, Anchit Gupta, Shubham Toshniwal, Yashar Mehdad, Wen-tau Yih
We present an empirical study of adapting an existing pretrained text-to-text model for long-sequence inputs.
Ranked #1 on Text Summarization on QMSum
no code implementations • 24 May 2022 • Chi-Liang Liu, Hung-Yi Lee, Wen-tau Yih
We propose structured prompt tuning, a simple and effective method to improve prompt tuning.
no code implementations • ACL 2022 • Bill Yuchen Lin, Sida Wang, Xi Victoria Lin, Robin Jia, Lin Xiao, Xiang Ren, Wen-tau Yih
Real-world natural language processing (NLP) models need to be continually updated to fix the prediction errors in out-of-distribution (OOD) data streams while overcoming catastrophic forgetting.
3 code implementations • 22 Apr 2022 • Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Wen-tau Yih, Sebastian Riedel, Fabio Petroni
Knowledge-intensive language tasks require NLP systems to both provide the correct answer and retrieve supporting evidence for it in a given corpus.
1 code implementation • NAACL 2022 • Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo, Yang Zhang, Shiyu Chang, Marin Soljačić, Shang-Wen Li, Wen-tau Yih, Yoon Kim, James Glass
We propose DiffCSE, an unsupervised contrastive learning framework for learning sentence embeddings.
Ranked #13 on Semantic Textual Similarity on STS16
1 code implementation • 15 Apr 2022 • Devendra Singh Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, Luke Zettlemoyer
We propose a simple and effective re-ranking method for improving passage retrieval in open question answering.
3 code implementations • 12 Apr 2022 • Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, Mike Lewis
Our model is the first generative model that is able to directly perform zero-shot code infilling, which we evaluate on challenging tasks such as type inference, comment generation, and variable re-naming.
Ranked #92 on Code Generation on MBPP
2 code implementations • 18 Dec 2021 • Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Dmytro Okhonko, Samuel Broscheit, Gautier Izacard, Patrick Lewis, Barlas Oğuz, Edouard Grave, Wen-tau Yih, Sebastian Riedel
In order to address increasing demands of real-world applications, the research for knowledge-intensive NLP (KI-NLP) should advance by capturing the challenges of a truly open-domain environment: web-scale knowledge, lack of structure, inconsistent quality and noise.
no code implementations • NAACL 2022 • Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen-tau Yih, Sebastian Riedel
DrBoost is trained in stages: each component model is learned sequentially and specialized by focusing only on retrieval mistakes made by the current ensemble.
1 code implementation • NAACL 2022 • Wenhan Xiong, Barlas Oğuz, Anchit Gupta, Xilun Chen, Diana Liskovich, Omer Levy, Wen-tau Yih, Yashar Mehdad
Many NLP tasks require processing long contexts beyond the length limit of pretrained models.
1 code implementation • ACL 2022 • Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih, Madian Khabsa
Recent parameter-efficient language model tuning (PELT) methods manage to match the performance of fine-tuning with much fewer trainable parameters and perform especially well when training data is limited.
1 code implementation • Findings (NAACL) 2022 • Patrick Huber, Armen Aghajanyan, Barlas Oğuz, Dmytro Okhonko, Wen-tau Yih, Sonal Gupta, Xilun Chen
Consequently, we propose a novel QA dataset based on the Common Crawl project in this paper.
2 code implementations • 13 Oct 2021 • Xilun Chen, Kushal Lakhotia, Barlas Oğuz, Anchit Gupta, Patrick Lewis, Stan Peshterliev, Yashar Mehdad, Sonal Gupta, Wen-tau Yih
Despite their recent popularity and well-known advantages, dense retrievers still lag behind sparse methods such as BM25 in their ability to reliably match salient phrases and rare entities in the query and to generalize to out-of-domain data.
Ranked #2 on Passage Retrieval on EntityQuestions
1 code implementation • Findings (NAACL) 2022 • Barlas Oğuz, Kushal Lakhotia, Anchit Gupta, Patrick Lewis, Vladimir Karpukhin, Aleksandra Piktus, Xilun Chen, Sebastian Riedel, Wen-tau Yih, Sonal Gupta, Yashar Mehdad
Pre-training on larger datasets with ever increasing model size is now a proven recipe for increased performance across almost all NLP tasks.
Ranked #2 on Passage Retrieval on Natural Questions (using extra training data)
1 code implementation • ACL 2021 • Divyansh Kaushik, Douwe Kiela, Zachary C. Lipton, Wen-tau Yih
In adversarial data collection (ADC), a human workforce interacts with a model in real time, attempting to produce examples that elicit incorrect predictions.
no code implementations • NAACL 2021 • Srinivasan Iyer, Sewon Min, Yashar Mehdad, Wen-tau Yih
State-of-the-art Machine Reading Comprehension (MRC) models for Open-domain Question Answering (QA) are typically trained for span selection using distantly supervised positive examples and heuristically retrieved negative examples.
no code implementations • EMNLP 2021 • Qinyuan Ye, Belinda Z. Li, Sinong Wang, Benjamin Bolte, Hao Ma, Wen-tau Yih, Xiang Ren, Madian Khabsa
Current NLP models are predominantly trained through a two-stage "pre-train then fine-tune" pipeline.
1 code implementation • NAACL 2021 • Nayeon Lee, Belinda Z. Li, Sinong Wang, Pascale Fung, Hao Ma, Wen-tau Yih, Madian Khabsa
In this paper, we introduce UnifiedM2, a general-purpose misinformation model that jointly models multiple domains of misinformation with a single, unified setup.
no code implementations • ACL 2021 • Jean Maillard, Vladimir Karpukhin, Fabio Petroni, Wen-tau Yih, Barlas Oğuz, Veselin Stoyanov, Gargi Ghosh
Retrieving relevant contexts from a large corpus is a crucial step for tasks such as open-domain question answering and fact checking.
no code implementations • 1 Jan 2021 • Sewon Min, Jordan Boyd-Graber, Chris Alberti, Danqi Chen, Eunsol Choi, Michael Collins, Kelvin Guu, Hannaneh Hajishirzi, Kenton Lee, Jennimaria Palomaki, Colin Raffel, Adam Roberts, Tom Kwiatkowski, Patrick Lewis, Yuxiang Wu, Heinrich Küttler, Linqing Liu, Pasquale Minervini, Pontus Stenetorp, Sebastian Riedel, Sohee Yang, Minjoon Seo, Gautier Izacard, Fabio Petroni, Lucas Hosseini, Nicola De Cao, Edouard Grave, Ikuya Yamada, Sonse Shimaoka, Masatoshi Suzuki, Shumpei Miyawaki, Shun Sato, Ryo Takahashi, Jun Suzuki, Martin Fajcik, Martin Docekal, Karel Ondrej, Pavel Smrz, Hao Cheng, Yelong Shen, Xiaodong Liu, Pengcheng He, Weizhu Chen, Jianfeng Gao, Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad, Wen-tau Yih
We review the EfficientQA competition from NeurIPS 2020.
no code implementations • EMNLP 2021 • Kushal Lakhotia, Bhargavi Paranjape, Asish Ghoshal, Wen-tau Yih, Yashar Mehdad, Srinivasan Iyer
Natural language (NL) explanations of model predictions are gaining popularity as a means to understand and verify decisions made by large black-box pre-trained models, for NLP tasks such as Question Answering (QA) and Fact Verification.
no code implementations • 31 Dec 2020 • Qinyuan Ye, Belinda Z. Li, Sinong Wang, Benjamin Bolte, Hao Ma, Wen-tau Yih, Xiang Ren, Madian Khabsa
Thus, our policy packs task-relevant knowledge into the parameters of a language model.
no code implementations • ACL 2021 • Michael Schlichtkrull, Vladimir Karpukhin, Barlas Oğuz, Mike Lewis, Wen-tau Yih, Sebastian Riedel
Structured information is an important knowledge source for automatic verification of factual claims.
1 code implementation • 21 Oct 2020 • Srinivasan Iyer, Sewon Min, Yashar Mehdad, Wen-tau Yih
State-of-the-art Machine Reading Comprehension (MRC) models for Open-domain Question Answering (QA) are typically trained for span selection using distantly supervised positive examples and heuristically retrieved negative examples.
3 code implementations • EMNLP 2020 • Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar Mehdad, Wen-tau Yih
We present ELQ, a fast end-to-end entity linking model for questions, which uses a biencoder to jointly perform mention detection and linking in one pass.
1 code implementation • ICLR 2021 • Wenhan Xiong, Xiang Lorraine Li, Srini Iyer, Jingfei Du, Patrick Lewis, William Yang Wang, Yashar Mehdad, Wen-tau Yih, Sebastian Riedel, Douwe Kiela, Barlas Oğuz
We propose a simple and efficient multi-hop dense retrieval approach for answering complex open-domain questions, which achieves state-of-the-art performance on two multi-hop datasets, HotpotQA and multi-evidence FEVER.
Ranked #14 on Question Answering on HotpotQA
no code implementations • ACL 2020 • Danqi Chen, Wen-tau Yih
This tutorial provides a comprehensive and coherent overview of cutting-edge research in open-domain question answering (QA), the task of answering questions using a large collection of documents of diversified topics.
no code implementations • WS 2020 • Nayeon Lee, Belinda Z. Li, Sinong Wang, Wen-tau Yih, Hao Ma, Madian Khabsa
Recent work has suggested that language models (LMs) store both common-sense and factual knowledge learned from pre-training data.
12 code implementations • NeurIPS 2020 • Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela
Large pre-trained language models have been shown to store factual knowledge in their parameters, and achieve state-of-the-art results when fine-tuned on downstream NLP tasks.
Ranked #4 on Question Answering on WebQuestions
1 code implementation • ACL 2020 • Pengcheng Yin, Graham Neubig, Wen-tau Yih, Sebastian Riedel
Recent years have witnessed the burgeoning of pretrained language models (LMs) for text-based natural language (NL) understanding tasks.
Ranked #12 on Text-To-SQL on spider (Exact Match Accuracy (Dev) metric)
1 code implementation • EMNLP 2020 • Ziyu Yao, Yiqi Tang, Wen-tau Yih, Huan Sun, Yu Su
Despite the widely successful applications, bootstrapping and fine-tuning semantic parsers are still a tedious process with challenges such as costly data annotation and privacy risks.
18 code implementations • EMNLP 2020 • Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method.
Ranked #1 on Question Answering on NaturalQA
2 code implementations • EMNLP 2020 • Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun Cho, Douwe Kiela
We aim to improve question answering (QA) by decomposing hard questions into simpler sub-questions that existing QA systems are capable of answering.
2 code implementations • IJCNLP 2019 • Ziyu Yao, Yu Su, Huan Sun, Wen-tau Yih
As a promising paradigm, interactive semantic parsing has shown to improve both semantic parsing accuracy and user confidence in the results.
no code implementations • IJCNLP 2019 • Bhavana Dalvi Mishra, Niket Tandon, Antoine Bosselut, Wen-tau Yih, Peter Clark
Our goal is to better comprehend procedural text, e. g., a paragraph about photosynthesis, by not only predicting what happens, but why some actions need to happen before others.
1 code implementation • NAACL 2019 • Xinya Du, Bhavana Dalvi Mishra, Niket Tandon, Antoine Bosselut, Wen-tau Yih, Peter Clark, Claire Cardie
Our goal is procedural text comprehension, namely tracking how the properties of entities (e. g., their location) change with time given a procedural text (e. g., a paragraph about photosynthesis, a recipe).
no code implementations • 20 Nov 2018 • Oyvind Tafjord, Peter Clark, Matt Gardner, Wen-tau Yih, Ashish Sabharwal
Many natural language questions require recognizing and reasoning with qualitative relationships (e. g., in science, economics, and medicine), but are challenging to answer with corpus-based methods.
1 code implementation • ICLR 2019 • Hsin-Yuan Huang, Eunsol Choi, Wen-tau Yih
Conversational machine comprehension requires the understanding of the conversation history, such as previous question/answer pairs, the document context, and the current question.
Ranked #1 on Question Answering on QuAC
no code implementations • EMNLP 2018 • Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, Luke Zettlemoyer
We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total).
no code implementations • EMNLP 2018 • Dipendra Misra, Ming-Wei Chang, Xiaodong He, Wen-tau Yih
Semantic parsing from denotations faces two key challenges in model training: (1) given only the denotations (e. g., answers), search for good candidate semantic parses, and (2) choose the best model update algorithm.
1 code implementation • EMNLP 2018 • Niket Tandon, Bhavana Dalvi Mishra, Joel Grus, Wen-tau Yih, Antoine Bosselut, Peter Clark
Comprehending procedural text, e. g., a paragraph describing photosynthesis, requires modeling actions and the state changes they produce, so that questions about entities at different timepoints can be answered.
no code implementations • EMNLP 2018 • Matthew E. Peters, Mark Neumann, Luke Zettlemoyer, Wen-tau Yih
Contextual word representations derived from pre-trained bidirectional language models (biLMs) have recently been shown to provide significant improvements to the state of the art for a wide range of NLP tasks.
no code implementations • 21 Aug 2018 • Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, Luke Zettlemoyer
We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total).
no code implementations • NAACL 2018 • Bhavana Dalvi Mishra, Lifu Huang, Niket Tandon, Wen-tau Yih, Peter Clark
The new dataset, ProPara, is the first to contain natural (rather than machine-generated) text about a changing world along with a full annotation of entity states (location and existence) during those changes (81k datapoints).
Ranked #4 on Procedural Text Understanding on ProPara
1 code implementation • NAACL 2018 • Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-tau Yih, Xiaodong He
In conventional supervised training, a model is trained to fit all the training examples.
Ranked #7 on Code Generation on WikiSQL
no code implementations • EMNLP 2017 • Haoruo Peng, Ming-Wei Chang, Wen-tau Yih
Neural networks have achieved state-of-the-art performance on several structured-output prediction tasks, trained in a fully supervised fashion.
no code implementations • TACL 2017 • Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, Wen-tau Yih
Past work in relation extraction has focused on binary relations in single sentences.
no code implementations • ACL 2017 • Hoifung Poon, Chris Quirk, Kristina Toutanova, Wen-tau Yih
We will introduce precision medicine and showcase the vast opportunities for NLP in this burgeoning field with great societal impact.
no code implementations • ACL 2017 • Mohit Iyyer, Wen-tau Yih, Ming-Wei Chang
Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans.
2 code implementations • 7 Feb 2017 • Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, Michel Galley
We generalize the widely-used Seq2Seq approach by conditioning responses on both conversation history and external "facts", allowing the model to be versatile and applicable in an open-domain setting.
no code implementations • 4 Nov 2016 • Mohit Iyyer, Wen-tau Yih, Ming-Wei Chang
Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans.
no code implementations • 12 Jan 2016 • Paul Smolensky, Moontae Lee, Xiaodong He, Wen-tau Yih, Jianfeng Gao, Li Deng
In this paper we present the initial development of a general theory for mapping inference in predicate logic to computation over Tensor Product Representations (TPRs; Smolensky (1990), Smolensky & Legendre (2006)).
no code implementations • 19 Nov 2015 • Moontae Lee, Xiaodong He, Wen-tau Yih, Jianfeng Gao, Li Deng, Paul Smolensky
Question answering tasks have shown remarkable progress with distributed vector representation.
10 code implementations • 20 Dec 2014 • Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, Li Deng
We consider learning representations of entities and relations in KBs using the neural-embedding approach.
Ranked #10 on Link Prediction on UMLS
no code implementations • 14 Nov 2014 • Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, Li Deng
In this paper we present a unified framework for modeling multi-relational representations, scoring, and learning, and conduct an empirical study of several recent multi-relational embedding models under the framework.
no code implementations • 28 Nov 2013 • Jianfeng Gao, Xiaodong He, Wen-tau Yih, Li Deng
The results show that the new semantic-based phrase translation model significantly improves the performance of a state-of-the-art phrase-based statistical machine translation sys-tem, leading to a gain of 0. 7-1. 0 BLEU points.
no code implementations • TACL 2013 • Ming-Wei Chang, Wen-tau Yih
Due to the nature of complex NLP problems, structured prediction algorithms have been important modeling tools for a wide range of tasks.