no code implementations • Findings (ACL) 2022 • Kai Nakamura, Sharon Levy, Yi-Lin Tuan, Wenhu Chen, William Yang Wang
A pressing challenge in current dialogue systems is to successfully converse with users on topics with information distributed across different modalities.
no code implementations • 10 Apr 2022 • Wenhu Chen, Pat Verga, Michiel de Jong, John Wieting, William Cohen
Retrieval augmented language models have recently become the standard for knowledge intensive tasks.
no code implementations • 15 Oct 2021 • Liangming Pan, Wenhu Chen, Min-Yen Kan, William Yang Wang
With a rise in false, inaccurate, and misleading information in propaganda, news, and social media, real-world Question Answering (QA) systems face the challenges of synthesizing and reasoning over contradicting information to derive correct answers.
no code implementations • Findings (EMNLP) 2021 • Shiyang Li, Semih Yavuz, Wenhu Chen, Xifeng Yan
Task-adaptive pre-training (TAPT) and Self-training (ST) have emerged as the major semi-supervised approaches to improve natural language understanding (NLU) tasks with massive amount of unlabeled data.
1 code implementation • EMNLP 2021 • Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema Moussa, Matt Beane, Ting-Hao Huang, Bryan Routledge, William Yang Wang
In contrast to existing tasks on general domain, the finance domain includes complex numerical reasoning and understanding of heterogeneous representations.
Ranked #1 on
Question Answering
on FinQA
1 code implementation • 13 Aug 2021 • Wenhu Chen, Xinyi Wang, William Yang Wang
Lots of facts can evolve with respect to time.
1 code implementation • NeurIPS 2021 • Yi-Lin Tuan, Connor Pryor, Wenhu Chen, Lise Getoor, William Yang Wang
To gain insights into the reasoning process of a generation model, we propose a new method, local explanation of response generation (LERG) that regards the explanations as the mutual interaction of segments in input and output sentences.
1 code implementation • NeurIPS 2021 • Xinyi Wang, Wenhu Chen, Michael Saxon, William Yang Wang
Although deep learning models have driven state-of-the-art performance on a wide array of tasks, they are prone to spurious correlations that should not be learned as predictive clues.
1 code implementation • ACL 2021 • Vardaan Pahuja, Yu Gu, Wenhu Chen, Mehdi Bahrami, Lei Liu, Wei-Peng Chen, Yu Su
Knowledge bases (KBs) and text often contain complementary knowledge: KBs store structured knowledge that can support long range reasoning, while text stores more comprehensive and timely knowledge in an unstructured way.
1 code implementation • ACL 2021 • Liangming Pan, Wenhu Chen, Wenhan Xiong, Min-Yen Kan, William Yang Wang
However, for each new domain that requires fact verification, creating a dataset by manually writing claims and linking them to their supporting evidence is expensive.
1 code implementation • NAACL 2021 • Liangming Pan, Wenhu Chen, Wenhan Xiong, Min-Yen Kan, William Yang Wang
Obtaining training data for multi-hop question answering (QA) is time-consuming and resource-intensive.
1 code implementation • ICLR 2021 • Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Wang, William W. Cohen
In open question answering (QA), the answer to a question is produced by retrieving and then analyzing documents that might contain answers to the question.
Ranked #1 on
Question Answering
on OTT-QA
no code implementations • 16 Oct 2020 • Yilin Shen, Wenhu Chen, Hongxia Jin
We design a Dirichlet Prior RNN to model high-order uncertainty by degenerating as softmax layer for RNN model training.
1 code implementation • EMNLP 2020 • Wenhu Chen, Yu Su, Xifeng Yan, William Yang Wang
We propose a knowledge-grounded pre-training (KGPT), which consists of two parts, 1) a general knowledge-grounded generation model to generate knowledge-enriched text.
Ranked #5 on
KG-to-Text Generation
on WebNLG 2.0 (Unconstrained)
1 code implementation • Findings of the Association for Computational Linguistics 2020 • Zhiyu Chen, Wenhu Chen, Hanwen Zha, Xiyou Zhou, Yunkai Zhang, Sairam Sundaresan, William Yang Wang
If only provided with the table, it is hard for existing models to produce controllable and high-fidelity logical generations.
1 code implementation • ACL 2020 • Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, William Yang Wang
To facilitate the study of the proposed logical NLG problem, we use the existing TabFact dataset \cite{chen2019tabfact} featured with a wide range of logical/symbolic inferences as our testbed, and propose new automatic metrics to evaluate the fidelity of generation models w. r. t.\ logical inference.
3 code implementations • Findings of the Association for Computational Linguistics 2020 • Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, William Wang
3) a hybrid model that combines heterogeneous information to find the answer.
Ranked #4 on
Question Answering
on HybridQA
1 code implementation • CVPR 2020 • Jingzhou Liu, Wenhu Chen, Yu Cheng, Zhe Gan, Licheng Yu, Yiming Yang, Jingjing Liu
We introduce a new task, Video-and-Language Inference, for joint multimodal understanding of video and text.
1 code implementation • 8 Jan 2020 • Pengda Qin, Xin Wang, Wenhu Chen, Chunyun Zhang, Weiran Xu, William Yang Wang
Large-scale knowledge graphs (KGs) are shown to become more important in current information systems.
1 code implementation • 8 Oct 2019 • Wenhu Chen, Zhe Gan, Linjie Li, Yu Cheng, William Wang, Jingjing Liu
To design a more powerful NMN architecture for practical use, we propose Meta Module Network (MMN) centered on a novel meta module, which can take in function recipes and morph into diverse instance modules dynamically.
1 code implementation • ICLR 2020 • Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, William Yang Wang
To this end, we construct a large-scale dataset called TabFact with 16k Wikipedia tables as the evidence for 118k human-annotated natural language statements, which are labeled as either ENTAILED or REFUTED.
Ranked #5 on
Table-based Fact Verification
on TabFact
2 code implementations • NeurIPS 2019 • Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, Xifeng Yan
Time series forecasting is an important problem across many domains, including predictions of solar plant energy output, electricity consumption, and traffic jam situation.
Ranked #27 on
Image Generation
on ImageNet 64x64
(Bits per dim metric)
1 code implementation • ACL 2019 • Zhiyu Chen, Hanwen Zha, Honglei Liu, Wenhu Chen, Xifeng Yan, Yu Su
Pre-trained embeddings such as word embeddings and sentence embeddings are fundamental tools facilitating a wide range of downstream NLP tasks.
Ranked #88 on
Action Classification
on Kinetics-400
2 code implementations • ACL 2019 • Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan, William Yang Wang
Semantically controlled neural response generation on limited-domain has achieved great performance.
Ranked #5 on
Data-to-Text Generation
on MULTIWOZ 2.1
1 code implementation • ACL 2020 • Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu, William Yang Wang
Neural-based end-to-end approaches to natural language generation (NLG) from structured data or knowledge are data-hungry, making their adoption for real-world applications difficult with limited data.
1 code implementation • NAACL 2019 • Wenhu Chen, Yu Su, Yilin Shen, Zhiyu Chen, Xifeng Yan, William Wang
Under deep neural networks, a pre-defined vocabulary is required to vectorize text inputs.
no code implementations • ICLR 2019 • Wenhu Chen, Yilin Shen, Hongxia Jin, William Wang
With the recently rapid development in deep learning, deep neural networks have been widely adopted in many real-life applications.
no code implementations • 24 Aug 2018 • Wenhu Chen, Guanlin Li, Shujie Liu, Zhirui Zhang, Mu Li, Ming Zhou
Then, we interpret sequence-to-sequence learning as learning a transductive model to transform the source local latent distributions to match their corresponding target distributions.
1 code implementation • EMNLP 2018 • Wenhu Chen, Jianshu Chen, Yu Su, Xin Wang, Dong Yu, Xifeng Yan, William Yang Wang
Then, we pre-train a state tracker for the source language as a teacher, which is able to exploit easy-to-access parallel data.
no code implementations • NAACL 2018 • Wenhu Chen, Guanlin Li, Shuo Ren, Shujie Liu, Zhirui Zhang, Mu Li, Ming Zhou
In order to alleviate data sparsity and overfitting problems in maximum likelihood estimation (MLE) for sequence prediction tasks, we propose the Generative Bridging Network (GBN), in which a novel bridge module is introduced to assist the training of the sequence prediction model (the generator network).
no code implementations • ACL 2018 • Shuo Ren, Wenhu Chen, Shujie Liu, Mu Li, Ming Zhou, Shuai Ma
Neural Machine Translation (NMT) performs poor on the low-resource language pair $(X, Z)$, especially when $Z$ is a rare language.
2 code implementations • ACL 2018 • Xin Wang, Wenhu Chen, Yuan-Fang Wang, William Yang Wang
Though impressive results have been achieved in visual captioning, the task of generating abstract stories from photo streams is still a little-tapped problem.
Ranked #1 on
Visual Storytelling
on VIST
no code implementations • NAACL 2018 • Wenhu Chen, Wenhan Xiong, Xifeng Yan, William Wang
Inferring missing links in knowledge graphs (KG) has attracted a lot of attention from the research community.
no code implementations • CVPR 2018 • Xin Wang, Wenhu Chen, Jiawei Wu, Yuan-Fang Wang, William Yang Wang
Video captioning is the task of automatically generating a textual description of the actions in a video.
Hierarchical Reinforcement Learning
reinforcement-learning
+1
no code implementations • 28 Jun 2017 • Wenhu Chen, Guanlin Li, Shuo Ren, Shujie Liu, Zhirui Zhang, Mu Li, Ming Zhou
In order to alleviate data sparsity and overfitting problems in maximum likelihood estimation (MLE) for sequence prediction tasks, we propose the Generative Bridging Network (GBN), in which a novel bridge module is introduced to assist the training of the sequence prediction model (the generator network).
1 code implementation • 16 Nov 2016 • Wenhu Chen, Aurelien Lucchi, Thomas Hofmann
We here propose a novel way of using such textual data by artificially generating missing visual information.
2 code implementations • AMTA 2016 • Wenhu Chen, Evgeny Matusov, Shahram Khadivi, Jan-Thorsten Peter
In this paper, we propose an effective way for biasing the attention mechanism of a sequence-to-sequence neural machine translation (NMT) model towards the well-studied statistical word alignment models.