no code implementations • 20 May 2023 • Bowen Jin, Wentao Zhang, Yu Zhang, Yu Meng, Xinyang Zhang, Qi Zhu, Jiawei Han
A real-world text corpus sometimes comprises not only text documents but also semantic links between them (e. g., academic papers in a bibliographic network are linked by citations and co-authorships).
1 code implementation • 26 Apr 2023 • Huaijun Jiang, Yu Shen, Yang Li, Wentao Zhang, Ce Zhang, Bin Cui
Black-box optimization (BBO) has a broad range of applications, including automatic machine learning, experimental design, and database knob tuning.
no code implementations • 18 Apr 2023 • Wentao Zhang, Yujun Huang, Tong Zhang, Qingsong Zou, Wei-Shi Zheng, Ruixuan Wang
To address the catastrophic forgetting issue, a novel adapter-based strategy is proposed to help effectively learn a set of new diseases at each round (or task) of continual learning, without changing the shared feature extractor.
no code implementations • 8 Apr 2023 • Jinming Li, Wentao Zhang, Tian Wang, Guanglei Xiong, Alan Lu, Gerard Medioni
The generated queries naturally serve as interpretable representations of user interests and can be searched to recommend cold-start items.
no code implementations • 27 Feb 2023 • Xinyi Gao, Wentao Zhang, Tong Chen, Junliang Yu, Quoc Viet Hung Nguyen, Hongzhi Yin
To tackle the imbalance of minority classes and supplement their inadequate semantics, we present the first method for the semantic imbalance problem in imbalanced HINs named Semantic-aware Node Synthesis (SNS).
no code implementations • 12 Feb 2023 • Tianyi Bai, Yang Li, Yu Shen, Xinyi Zhang, Wentao Zhang, Bin Cui
A wide spectrum of design and decision problems, including parameter tuning, A/B testing and drug design, intrinsically are instances of black-box optimization.
no code implementations • 8 Feb 2023 • Yu Shen, Xinyuyang Ren, Yupeng Lu, Huaijun Jiang, Huanyong Xu, Di Peng, Yang Li, Wentao Zhang, Bin Cui
When applying transfer learning to accelerate the tuning process, we notice two domain-specific challenges: 1) most previous work focus on transferring tuning history, while expert knowledge from Spark engineers is of great potential to improve the tuning performance but is not well studied so far; 2) history tasks should be carefully utilized, where using dissimilar ones lead to a deteriorated performance in production.
no code implementations • 7 Feb 2023 • Yu Shen, Yupeng Lu, Yang Li, Yaofeng Tu, Wentao Zhang, Bin Cui
To tackle this issue and further enhance the ensemble performance, we propose DivBO, a diversity-aware framework to inject explicit search of diversity into the CASH problems.
no code implementations • 7 Feb 2023 • Wei Shi, Wentao Zhang, Weishi Zheng, Ruixuan Wang
There is an increasing demand for interpretation of model predictions especially in high-risk applications.
1 code implementation • 21 Nov 2022 • Ling Yang, Zhilin Huang, Yang song, Shenda Hong, Guohao Li, Wentao Zhang, Bin Cui, Bernard Ghanem, Ming-Hsuan Yang
Generating images from graph-structured inputs, such as scene graphs, is uniquely challenging due to the difficulty of aligning nodes and connections in graphs with objects and their relations in images.
no code implementations • 1 Nov 2022 • Xinyi Gao, Wentao Zhang, Yingxia Shao, Quoc Viet Hung Nguyen, Bin Cui, Hongzhi Yin
Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications.
no code implementations • 1 Nov 2022 • Yingxia Shao, Hongzheng Li, Xizhi Gu, Hongbo Yin, Yawen Li, Xupeng Miao, Wentao Zhang, Bin Cui, Lei Chen
In this survey, we analyze three major challenges in distributed GNN training that are massive feature communication, the loss of model accuracy and workload imbalance.
2 code implementations • 2 Sep 2022 • Ling Yang, Zhilong Zhang, Yang song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang, Bin Cui, Ming-Hsuan Yang
This survey aims to provide a contextualized, in-depth look at the state of diffusion models, identifying the key areas of focus and pointing to potential areas for further exploration.
1 code implementation • 19 Jun 2022 • Yang Li, Yu Shen, Wentao Zhang, Ce Zhang, Bin Cui
End-to-end AutoML has attracted intensive interests from both academia and industry which automatically searches for ML pipelines in a space induced by feature engineering, algorithm/model selection, and hyper-parameter tuning.
1 code implementation • 17 Jun 2022 • Wentao Zhang, Zheyu Lin, Yu Shen, Yang Li, Zhi Yang, Bin Cui
Graph neural networks (GNNs) have been intensively applied to various graph-based applications.
2 code implementations • 17 Jun 2022 • Wentao Zhang, Zeang Sheng, Mingyu Yang, Yang Li, Yu Shen, Zhi Yang, Bin Cui
First, GNNs can learn higher-order structural information by stacking more layers but can not deal with large depth due to the over-smoothing issue.
1 code implementation • 9 Jun 2022 • Wentao Zhang, Zeang Sheng, Ziqi Yin, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi Yang, Bin Cui
Graph Neural Networks (GNNs) have achieved great success in various graph mining tasks. However, drastic performance degradation is always observed when a GNN is stacked with many layers.
1 code implementation • 9 Jun 2022 • Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang, Bin Cui
Graph neural networks (GNNs) have achieved great success in many graph-based applications.
no code implementations • 6 Jun 2022 • Yang Li, Yu Shen, Huaijun Jiang, Wentao Zhang, Zhi Yang, Ce Zhang, Bin Cui
With the extensive applications of machine learning models, automatic hyperparameter optimization (HPO) has become increasingly important.
no code implementations • 6 Jun 2022 • Yang Li, Yu Shen, Huaijun Jiang, Tianyi Bai, Wentao Zhang, Ce Zhang, Bin Cui
The extensive experiments show that our approach considerably boosts BO by designing a promising and compact search space instead of using the entire space, and outperforms the state-of-the-arts on a wide range of benchmarks, including machine learning and deep learning tuning tasks, and neural architecture search.
1 code implementation • 20 Mar 2022 • Yuezihan Jiang, Yu Cheng, Hanyu Zhao, Wentao Zhang, Xupeng Miao, Yu He, Liang Wang, Zhi Yang, Bin Cui
We introduce ZOOMER, a system deployed at Taobao, the largest e-commerce platform in China, for training and serving GNN-based recommendations over web-scale graphs.
1 code implementation • ICLR 2022 • Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong Shan, Zhi Yang, Bin Cui
Graph Neural Networks (GNNs) have achieved great success in various tasks, but their performance highly relies on a large number of labeled nodes, which typically requires considerable human effort.
no code implementations • 1 Mar 2022 • Wentao Zhang, Shuang Xu, Haoran Huang
We further develop a new method for supervised contrastive learning, referred to as two-level supervised contrastive learning, and employ the method in response selection in multi-turn dialogue.
1 code implementation • 1 Mar 2022 • Wentao Zhang, Yu Shen, Zheyu Lin, Yang Li, Xiaosen Li, Wen Ouyang, Yangyu Tao, Zhi Yang, Bin Cui
Through deconstructing the message passing mechanism, PasCa presents a novel Scalable Graph Neural Architecture Paradigm (SGAP), together with a general architecture design space consisting of 150k different designs.
no code implementations • 18 Jan 2022 • Yang Li, Yu Shen, Huaijun Jiang, Wentao Zhang, Jixiang Li, Ji Liu, Ce Zhang, Bin Cui
The ever-growing demand and complexity of machine learning are putting pressure on hyper-parameter tuning systems: while the evaluation cost of models continues to increase, the scalability of state-of-the-arts starts to become a crucial bottleneck.
no code implementations • 26 Dec 2021 • Shicheng Gao, Jie Xu, Xiaosen Li, Fangcheng Fu, Wentao Zhang, Wen Ouyang, Yangyu Tao, Bin Cui
For example, the distributed K-core decomposition algorithm can scale to a large graph with 136 billion edges without losing correctness with our divide-and-conquer technique.
1 code implementation • NeurIPS 2021 • Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong Shan, Zhi Yang, Bin Cui
Message passing is the core of most graph models such as Graph Convolutional Network (GCN) and Label Propagation (LP), which usually require a large number of clean labeled data to smooth out the neighborhood over the graph.
1 code implementation • NeurIPS 2021 • Wentao Zhang, Mingyu Yang, Zeang Sheng, Yang Li, Wen Ouyang, Yangyu Tao, Zhi Yang, Bin Cui
Recent works reveal that feature or label smoothing lies at the core of Graph Neural Networks (GNNs).
no code implementations • 20 Oct 2021 • Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng Yao, Jixiang Li, Sen yang, Ji Liu, Bin Cui
Designing neural architectures requires immense manual efforts.
no code implementations • 23 Aug 2021 • Wentao Zhang, Ziqi Yin, Zeang Sheng, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang, Bin Cui
Graph neural networks (GNNs) have recently achieved state-of-the-art performance in many graph-based applications.
no code implementations • 9 Aug 2021 • Wentao Zhang
This paper studies coordination problem for time-varying networks suffering from antagonistic information, quantified by scaling parameters.
1 code implementation • 2 Aug 2021 • Wentao Zhang, Zeang Sheng, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi Yang, Bin Cui
Based on the experimental results, we answer the following two essential questions: (1) what actually leads to the compromised performance of deep GNNs; (2) when we need and how to build deep GNNs.
1 code implementation • 31 Jul 2021 • Wentao Zhang, Zhi Yang, Yexin Wang, Yu Shen, Yang Li, Liang Wang, Bin Cui
Data selection methods, such as active learning and core-set selection, are useful tools for improving the data efficiency of deep learning models on large-scale datasets.
1 code implementation • 25 Jul 2021 • Wentao Zhang, Yuezihan Jiang, Yang Li, Zeang Sheng, Yu Shen, Xupeng Miao, Liang Wang, Zhi Yang, Bin Cui
Unfortunately, many real-world networks are sparse in terms of both edges and labels, leading to sub-optimal performance of GNNs.
3 code implementations • 19 Jul 2021 • Yang Li, Yu Shen, Wentao Zhang, Jiawei Jiang, Bolin Ding, Yaliang Li, Jingren Zhou, Zhi Yang, Wentao Wu, Ce Zhang, Bin Cui
End-to-end AutoML has attracted intensive interests from both academia and industry, which automatically searches for ML pipelines in a space induced by feature engineering, algorithm/model selection, and hyper-parameter tuning.
6 code implementations • 1 Jun 2021 • Yang Li, Yu Shen, Wentao Zhang, Yuanwei Chen, Huaijun Jiang, Mingchao Liu, Jiawei Jiang, Jinyang Gao, Wentao Wu, Zhi Yang, Ce Zhang, Bin Cui
Black-box optimization (BBO) has a broad range of applications, including automatic machine learning, engineering, physics, and experimental design.
no code implementations • 20 Apr 2021 • Wentao Zhang, Yu Shen, Zheyu Lin, Yang Li, Xiaosen Li, Wen Ouyang, Yangyu Tao, Zhi Yang, Bin Cui
In recent studies, neural message passing has proved to be an effective way to design graph neural networks (GNNs), which have achieved state-of-the-art performance in many graph-based tasks.
no code implementations • 27 Jan 2021 • Wentao Zhang, Zhiqiang Zuo, Yijing Wang
A common trait involving the opinion dynamics in social networks is an anchor on interacting network to characterize the opinion formation process among participating social actors, such as information flow, cooperative and antagonistic influence, etc.
no code implementations • 21 Jan 2021 • Shaofeng Duan, Yun Cheng, Wei Xia, Yuanyuan Yang, Fengfeng Qi, Tianwei Tang, Yanfeng Guo, Dong Qian, Dao Xiang, Jie Zhang, Wentao Zhang
Exotic phenomenon can be achieved in quantum materials by confining electronic states into two dimensions.
Strongly Correlated Electrons Materials Science Superconductivity
1 code implementation • 4 Nov 2020 • Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, Bin Cui
With the explosive growth of online information, recommender systems play a key role to alleviate such information overload.
no code implementations • 10 Oct 2019 • Xupeng Miao, Nezihe Merve Gürel, Wentao Zhang, Zhichao Han, Bo Li, Wei Min, Xi Rao, Hansheng Ren, Yinan Shan, Yingxia Shao, Yujie Wang, Fan Wu, Hui Xue, Yaming Yang, Zitao Zhang, Yang Zhao, Shuai Zhang, Yujing Wang, Bin Cui, Ce Zhang
Despite the wide application of Graph Convolutional Network (GCN), one major limitation is that it does not benefit from the increasing depth and suffers from the oversmoothing problem.