1 code implementation • 12 Mar 2022 • Wenzheng Feng, Yuxiao Dong, Tinglin Huang, Ziqi Yin, Xu Cheng, Evgeny Kharlamov, Jie Tang
In this work, we present a scalable and high-performance GNN framework GRAND+ for semi-supervised graph learning.
Ranked #1 on Node Classification on MAG-scholar-C
no code implementations • 8 Mar 2022 • Jibing Gong, Yao Wan, Ye Liu, Xuewen Li, Yi Zhao, Cheng Wang, YuTing Lin, Xiaohan Fang, Wenzheng Feng, Jingyi Zhang, Jie Tang
Despite the usefulness of this service, we consider that recommending courses to users directly may neglect their varying degrees of expertise.
1 code implementation • 30 Dec 2021 • Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, Jie Tang
Heterogeneous graph neural networks (HGNNs) have been blossoming in recent years, but the unique data processing and evaluation setups used by each work obstruct a full understanding of their advancements.
4 code implementations • 8 Dec 2021 • Chenhui Zhang, Yufei He, Yukuo Cen, Zhenyu Hou, Wenzheng Feng, Yuxiao Dong, Xu Cheng, Hongyun Cai, Feng He, Jie Tang
However, it is unclear how to best design the generalization strategies in GNNs, as it works in a semi-supervised setting for graph data.
Ranked #3 on Node Property Prediction on ogbn-papers100M
1 code implementation • 5 Nov 2021 • Tianyu Zhang, Yuxiang Ren, Wenzheng Feng, Weitao Du, Xuecang Zhang
In this paper, we show the potential hazards of inappropriate augmentations and then propose a novel Collaborative Graph Contrastive Learning framework (CGCL).
1 code implementation • NeurIPS 2020 • Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Kharlamov, Jie Tang
We study the problem of semi-supervised learning on graphs, for which graph neural networks (GNNs) have been extensively explored.
no code implementations • ACL 2020 • Jifan Yu, Gan Luo, Tong Xiao, Qingyang Zhong, Yuquan Wang, Wenzheng Feng, Junyi Luo, Chenyu Wang, Lei Hou, Juanzi Li, Zhiyuan Liu, Jie Tang
The prosperity of Massive Open Online Courses (MOOCs) provides fodder for many NLP and AI research for education applications, e. g., course concept extraction, prerequisite relation discovery, etc.
2 code implementations • 23 Jun 2020 • Shen Wang, Jibing Gong, Jinlong Wang, Wenzheng Feng, Hao Peng, Jie Tang, Philip S. Yu
To address this issue, we leverage both content information and context information to learn the representation of entities via graph convolution network.
8 code implementations • 22 May 2020 • Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Kharlamov, Jie Tang
We study the problem of semi-supervised learning on graphs, for which graph neural networks (GNNs) have been extensively explored.
no code implementations • SEMEVAL 2017 • Wenzheng Feng, Yu Wu, Wei Wu, Zhoujun Li, Ming Zhou
This paper presents the system in SemEval-2017 Task 3, Community Question Answering (CQA).