Search Results for author: Wibe A. de Jong

Found 10 papers, 6 papers with code

Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry

1 code implementation20 Nov 2024 Yoel Zimmermann, Adib Bazgir, Zartashia Afzal, Fariha Agbere, Qianxiang Ai, Nawaf Alampara, Alexander Al-Feghali, Mehrad Ansari, Dmytro Antypov, Amro Aswad, Jiaru Bai, Viktoriia Baibakova, Devi Dutta Biswajeet, Erik Bitzek, Joshua D. Bocarsly, Anna Borisova, Andres M Bran, L. Catherine Brinson, Marcel Moran Calderon, Alessandro Canalicchio, Victor Chen, Yuan Chiang, Defne Circi, Benjamin Charmes, Vikrant Chaudhary, Zizhang Chen, Min-Hsueh Chiu, Judith Clymo, Kedar Dabhadkar, Nathan Daelman, Archit Datar, Wibe A. de Jong, Matthew L. Evans, Maryam Ghazizade Fard, Giuseppe Fisicaro, Abhijeet Sadashiv Gangan, Janine George, Jose D. Cojal Gonzalez, Michael Götte, Ankur K. Gupta, Hassan Harb, Pengyu Hong, Abdelrahman Ibrahim, Ahmed Ilyas, Alishba Imran, Kevin Ishimwe, Ramsey Issa, Kevin Maik Jablonka, Colin Jones, Tyler R. Josephson, Greg Juhasz, Sarthak Kapoor, Rongda Kang, Ghazal Khalighinejad, Sartaaj Khan, Sascha Klawohn, Suneel Kuman, Alvin Noe Ladines, Sarom Leang, Magdalena Lederbauer, Sheng-Lun, Liao, Hao liu, Xuefeng Liu, Stanley Lo, Sandeep Madireddy, Piyush Ranjan Maharana, Shagun Maheshwari, Soroush Mahjoubi, José A. Márquez, Rob Mills, Trupti Mohanty, Bernadette Mohr, Seyed Mohamad Moosavi, Alexander Moßhammer, Amirhossein D. Naghdi, Aakash Naik, Oleksandr Narykov, Hampus Näsström, Xuan Vu Nguyen, Xinyi Ni, Dana O'Connor, Teslim Olayiwola, Federico Ottomano, Aleyna Beste Ozhan, Sebastian Pagel, Chiku Parida, Jaehee Park, Vraj Patel, Elena Patyukova, Martin Hoffmann Petersen, Luis Pinto, José M. Pizarro, Dieter Plessers, Tapashree Pradhan, Utkarsh Pratiush, Charishma Puli, Andrew Qin, Mahyar Rajabi, Francesco Ricci, Elliot Risch, Martiño Ríos-García, Aritra Roy, Tehseen Rug, Hasan M Sayeed, Markus Scheidgen, Mara Schilling-Wilhelmi, Marcel Schloz, Fabian Schöppach, Julia Schumann, Philippe Schwaller, Marcus Schwarting, Samiha Sharlin, Kevin Shen, Jiale Shi, Pradip Si, Jennifer D'Souza, Taylor Sparks, Suraj Sudhakar, Leopold Talirz, Dandan Tang, Olga Taran, Carla Terboven, Mark Tropin, Anastasiia Tsymbal, Katharina Ueltzen, Pablo Andres Unzueta, Archit Vasan, Tirtha Vinchurkar, Trung Vo, Gabriel Vogel, Christoph Völker, Jan Weinreich, Faradawn Yang, Mohd Zaki, Chi Zhang, Sylvester Zhang, Weijie Zhang, Ruijie Zhu, Shang Zhu, Jan Janssen, Calvin Li, Ian Foster, Ben Blaiszik

Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions.

Language Modeling Language Modelling +2

Spatial Graph Attention and Curiosity-driven Policy for Antiviral Drug Discovery

4 code implementations ICLR 2022 Yulun Wu, Mikaela Cashman, Nicholas Choma, Érica T. Prates, Verónica G. Melesse Vergara, Manesh Shah, Andrew Chen, Austin Clyde, Thomas S. Brettin, Wibe A. de Jong, Neeraj Kumar, Martha S. Head, Rick L. Stevens, Peter Nugent, Daniel A. Jacobson, James B. Brown

We developed Distilled Graph Attention Policy Network (DGAPN), a reinforcement learning model to generate novel graph-structured chemical representations that optimize user-defined objectives by efficiently navigating a physically constrained domain.

Drug Discovery Graph Attention

Detecting Label Noise via Leave-One-Out Cross-Validation

no code implementations21 Mar 2021 Yu-Hang Tang, Yuanran Zhu, Wibe A. de Jong

Optimizing the noise model using maximum likelihood estimation leads to the containment of the GPR model's predictive error by the posterior standard deviation in leave-one-out cross-validation.

GPR regression

Constant-Depth Circuits for Dynamic Simulations of Materials on Quantum Computers

1 code implementation12 Mar 2021 Lindsay Bassman, Roel Van Beeumen, Ed Younis, Ethan Smith, Costin Iancu, Wibe A. de Jong

Current algorithms for Hamiltonian simulation, however, produce circuits that grow in depth with increasing simulation time, limiting feasible simulations to short-time dynamics.

Quantum Physics

Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on Quantum Computers

no code implementations4 Mar 2021 Mekena Metcalf, Emma Stone, Katherine Klymko, Alexander F. Kemper, Mohan Sarovar, Wibe A. de Jong

Modeling a macroscopic environment on a quantum simulator may be achieved by coupling independent ancilla qubits that facilitate energy exchange in an appropriate manner with the system and mimic an environment.

Quantum Physics Statistical Mechanics

Composable Programming of Hybrid Workflows for Quantum Simulation

no code implementations20 Jan 2021 Thien Nguyen, Lindsay Bassman, Dmitry Lyakh, Alexander McCaskey, Vicente Leyton-Ortega, Raphael Pooser, Wael Elwasif, Travis S. Humble, Wibe A. de Jong

Subsequently, it allows a synthesis of new hybrid algorithms and workflows via the extension, specialization, and dynamic customization of the abstract core classes defined by our design.

Quantum Physics

On the Efficient Evaluation of the Exchange Correlation Potential on Graphics Processing Unit Clusters

2 code implementations7 Jul 2020 David B. Williams-Young, Wibe A. de Jong, Hubertus J. J. van Dam, Chao Yang

We demonstrate the performance and scalability of the implementation of the purposed method in the NWChemEx software package by comparing to the existing scalable CPU XC integration in NWChem.

Computational Physics Distributed, Parallel, and Cluster Computing Chemical Physics

ML4Chem: A Machine Learning Package for Chemistry and Materials Science

1 code implementation2 Mar 2020 Muammar El Khatib, Wibe A. de Jong

It provides an extendable platform to develop and deploy machine learning models and pipelines and is targeted to the non-expert and expert users.

BIG-bench Machine Learning Model Optimization +1

Prediction of Atomization Energy Using Graph Kernel and Active Learning

no code implementations16 Oct 2018 Yu-Hang Tang, Wibe A. de Jong

Data-driven prediction of molecular properties presents unique challenges to the design of machine learning methods concerning data structure/dimensionality, symmetry adaption, and confidence management.

Active Learning Management

Cannot find the paper you are looking for? You can Submit a new open access paper.