1 code implementation • 13 Jan 2021 • Anuroop Sriram, Matthew Muckley, Koustuv Sinha, Farah Shamout, Joelle Pineau, Krzysztof J. Geras, Lea Azour, Yindalon Aphinyanaphongs, Nafissa Yakubova, William Moore
The first is deterioration prediction from a single image, where our model achieves an area under receiver operating characteristic curve (AUC) of 0. 742 for predicting an adverse event within 96 hours (compared to 0. 703 with supervised pretraining) and an AUC of 0. 765 for predicting oxygen requirements greater than 6 L a day at 24 hours (compared to 0. 749 with supervised pretraining).
1 code implementation • 4 Aug 2020 • Farah E. Shamout, Yiqiu Shen, Nan Wu, Aakash Kaku, Jungkyu Park, Taro Makino, Stanisław Jastrzębski, Duo Wang, Ben Zhang, Siddhant Dogra, Meng Cao, Narges Razavian, David Kudlowitz, Lea Azour, William Moore, Yvonne W. Lui, Yindalon Aphinyanaphongs, Carlos Fernandez-Granda, Krzysztof J. Geras
In order to verify performance in a real clinical setting, we silently deployed a preliminary version of the deep neural network at New York University Langone Health during the first wave of the pandemic, which produced accurate predictions in real-time.