Search Results for author: Winson Han

Found 8 papers, 4 papers with code

ManipulaTHOR: A Framework for Visual Object Manipulation

1 code implementation CVPR 2021 Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha Kembhavi, Roozbeh Mottaghi

Object manipulation is an established research domain within the robotics community and poses several challenges including manipulator motion, grasping and long-horizon planning, particularly when dealing with oft-overlooked practical setups involving visually rich and complex scenes, manipulation using mobile agents (as opposed to tabletop manipulation), and generalization to unseen environments and objects.

Learning Flexible Visual Representations via Interactive Gameplay

no code implementations ICLR 2021 Luca Weihs, Aniruddha Kembhavi, Kiana Ehsani, Sarah M Pratt, Winson Han, Alvaro Herrasti, Eric Kolve, Dustin Schwenk, Roozbeh Mottaghi, Ali Farhadi

A growing body of research suggests that embodied gameplay, prevalent not just in human cultures but across a variety of animal species including turtles and ravens, is critical in developing the neural flexibility for creative problem solving, decision making and socialization.

Decision Making Representation Learning

RoboTHOR: An Open Simulation-to-Real Embodied AI Platform

1 code implementation CVPR 2020 Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi Salvador, Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, Luca Weihs, Mark Yatskar, Ali Farhadi

We argue that interactive and embodied visual AI has reached a stage of development similar to visual recognition prior to the advent of these ecosystems.

Learning Generalizable Visual Representations via Interactive Gameplay

no code implementations17 Dec 2019 Luca Weihs, Aniruddha Kembhavi, Kiana Ehsani, Sarah M Pratt, Winson Han, Alvaro Herrasti, Eric Kolve, Dustin Schwenk, Roozbeh Mottaghi, Ali Farhadi

A growing body of research suggests that embodied gameplay, prevalent not just in human cultures but across a variety of animal species including turtles and ravens, is critical in developing the neural flexibility for creative problem solving, decision making, and socialization.

Decision Making Representation Learning

ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

5 code implementations CVPR 2020 Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, Dieter Fox

We present ALFRED (Action Learning From Realistic Environments and Directives), a benchmark for learning a mapping from natural language instructions and egocentric vision to sequences of actions for household tasks.

Natural Language Visual Grounding

Cannot find the paper you are looking for? You can Submit a new open access paper.