1 code implementation • 5 Jun 2020 • Hans Pinckaers, Wouter Bulten, Jeroen van der Laak, Geert Litjens
As such, developing algorithms which do not require manual pixel-wise annotations, but can learn using only the clinical report would be a significant advancement for the field.
no code implementations • 11 Feb 2020 • Wouter Bulten, Maschenka Balkenhol, Jean-Joël Awoumou Belinga, Américo Brilhante, Aslı Çakır, Xavier Farré, Katerina Geronatsiou, Vincent Molinié, Guilherme Pereira, Paromita Roy, Günter Saile, Paulo Salles, Ewout Schaafsma, Joëlle Tschui, Anne-Marie Vos, Hester van Boven, Robert Vink, Jeroen van der Laak, Christina Hulsbergen-van de Kaa, Geert Litjens
We investigated the value of AI assistance for grading prostate biopsies.
no code implementations • 18 Jul 2019 • Wouter Bulten, Hans Pinckaers, Hester van Boven, Robert Vink, Thomas de Bel, Bram van Ginneken, Jeroen van der Laak, Christina Hulsbergen-van de Kaa, Geert Litjens
We developed a fully automated deep learning system to grade prostate biopsies.
no code implementations • 16 May 2019 • Koen Dercksen, Wouter Bulten, Geert Litjens
Results show that semi-/unsupervised methods have an advantage over supervised learning when few labels are available.
no code implementations • 18 Feb 2019 • David Tellez, Geert Litjens, Peter Bandi, Wouter Bulten, John-Melle Bokhorst, Francesco Ciompi, Jeroen van der Laak
Stain variation is a phenomenon observed when distinct pathology laboratories stain tissue slides that exhibit similar but not identical color appearance.
no code implementations • 17 Aug 2018 • Wouter Bulten, Péter Bándi, Jeffrey Hoven, Rob van de Loo, Johannes Lotz, Nick Weiss, Jeroen van der Laak, Bram van Ginneken, Christina Hulsbergen-van de Kaa, Geert Litjens
The H&E slides were co-registered to the IHC slides.
no code implementations • 19 Apr 2018 • Wouter Bulten, Geert Litjens
We propose an unsupervised method using self-clustering convolutional adversarial autoencoders to classify prostate tissue as tumor or non-tumor without any labeled training data.