Search Results for author: Wulong Liu

Found 29 papers, 4 papers with code

Neuro-Symbolic Hierarchical Rule Induction

no code implementations26 Dec 2021 Claire Glanois, Xuening Feng, Zhaohui Jiang, Paul Weng, Matthieu Zimmer, Dong Li, Wulong Liu

We propose an efficient interpretable neuro-symbolic model to solve Inductive Logic Programming (ILP) problems.

Inductive logic programming reinforcement-learning

A Survey on Interpretable Reinforcement Learning

no code implementations24 Dec 2021 Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, Wulong Liu

To that aim, we distinguish interpretability (as a property of a model) and explainability (as a post-hoc operation, with the intervention of a proxy) and discuss them in the context of RL with an emphasis on the former notion.

Autonomous Driving Decision Making +1

Generalizable Cross-Graph Embedding for GNN-based Congestion Prediction

no code implementations10 Nov 2021 Amur Ghose, Vincent Zhang, Yingxue Zhang, Dong Li, Wulong Liu, Mark Coates

To address this limitation, we propose a framework that can directly learn embeddings for the given netlist to enhance the quality of our node features.

Graph Embedding

Learning Explicit Credit Assignment for Multi-agent Joint Q-learning

no code implementations29 Sep 2021 Hangyu Mao, Jianye Hao, Dong Li, Jun Wang, Weixun Wang, Xiaotian Hao, Bin Wang, Kun Shao, Zhen Xiao, Wulong Liu

In contrast, we formulate an \emph{explicit} credit assignment problem where each agent gives its suggestion about how to weight individual Q-values to explicitly maximize the joint Q-value, besides guaranteeing the Bellman optimality of the joint Q-value.


$S^3$: Sign-Sparse-Shift Reparametrization for Effective Training of Low-bit Shift Networks

no code implementations NeurIPS 2021 Xinlin Li, Bang Liu, YaoLiang Yu, Wulong Liu, Chunjing Xu, Vahid Partovi Nia

Shift neural networks reduce computation complexity by removing expensive multiplication operations and quantizing continuous weights into low-bit discrete values, which are fast and energy efficient compared to conventional neural networks.

Cooperative Multi-Agent Transfer Learning with Level-Adaptive Credit Assignment

no code implementations1 Jun 2021 Tianze Zhou, Fubiao Zhang, Kun Shao, Kai Li, Wenhan Huang, Jun Luo, Weixun Wang, Yaodong Yang, Hangyu Mao, Bin Wang, Dong Li, Wulong Liu, Jianye Hao

In addition, we use a novel agent network named Population Invariant agent with Transformer (PIT) to realize the coordination transfer in more varieties of scenarios.

Multi-agent Reinforcement Learning Starcraft +2

S$^3$: Sign-Sparse-Shift Reparametrization for Effective Training of Low-bit Shift Networks

no code implementations NeurIPS 2021 Xinlin Li, Bang Liu, YaoLiang Yu, Wulong Liu, Chunjing Xu, Vahid Partovi Nia

Shift neural networks reduce computation complexity by removing expensive multiplication operations and quantizing continuous weights into low-bit discrete values, which are fast and energy-efficient compared to conventional neural networks.

Learning Symbolic Rules for Interpretable Deep Reinforcement Learning

no code implementations15 Mar 2021 Zhihao Ma, Yuzheng Zhuang, Paul Weng, Hankz Hankui Zhuo, Dong Li, Wulong Liu, Jianye Hao

To address this challenge and improve the transparency, we propose a Neural Symbolic Reinforcement Learning framework by introducing symbolic logic into DRL.


Addressing Action Oscillations through Learning Policy Inertia

no code implementations3 Mar 2021 Chen Chen, Hongyao Tang, Jianye Hao, Wulong Liu, Zhaopeng Meng

We propose Nested Policy Iteration as a general training algorithm for PIC-augmented policy which ensures monotonically non-decreasing updates under some mild conditions.

Atari Games Autonomous Driving +1

Robust Memory Augmentation by Constrained Latent Imagination

no code implementations1 Jan 2021 Yao Mu, Yuzheng Zhuang, Bin Wang, Wulong Liu, Shengbo Eben Li, Jianye Hao

The latent dynamics model summarizes an agent’s high dimensional experiences in a compact way.

Approximating Pareto Frontier through Bayesian-optimization-directed Robust Multi-objective Reinforcement Learning

no code implementations1 Jan 2021 Xiangkun He, Jianye Hao, Dong Li, Bin Wang, Wulong Liu

Thirdly, the agent’s learning process is regarded as a black-box, and the comprehensive metric we proposed is computed after each episode of training, then a Bayesian optimization (BO) algorithm is adopted to guide the agent to evolve towards improving the quality of the approximated Pareto frontier.


Robust Multi-Agent Reinforcement Learning Driven by Correlated Equilibrium

no code implementations1 Jan 2021 Yizheng Hu, Kun Shao, Dong Li, Jianye Hao, Wulong Liu, Yaodong Yang, Jun Wang, Zhanxing Zhu

Therefore, to achieve robust CMARL, we introduce novel strategies to encourage agents to learn correlated equilibrium while maximally preserving the convenience of the decentralized execution.

Adversarial Robustness reinforcement-learning +1

What About Inputing Policy in Value Function: Policy Representation and Policy-extended Value Function Approximator

no code implementations NeurIPS 2021 Hongyao Tang, Zhaopeng Meng, Jianye Hao, Chen Chen, Daniel Graves, Dong Li, Changmin Yu, Hangyu Mao, Wulong Liu, Yaodong Yang, Wenyuan Tao, Li Wang

We study Policy-extended Value Function Approximator (PeVFA) in Reinforcement Learning (RL), which extends conventional value function approximator (VFA) to take as input not only the state (and action) but also an explicit policy representation.

Continuous Control Contrastive Learning +2

Transfer among Agents: An Efficient Multiagent Transfer Learning Framework

no code implementations28 Sep 2020 Tianpei Yang, Jianye Hao, Weixun Wang, Hongyao Tang, Zhaopeng Meng, Hangyu Mao, Dong Li, Wulong Liu, Yujing Hu, Yingfeng Chen, Changjie Fan

In many cases, each agent's experience is inconsistent with each other which causes the option-value estimation to oscillate and to become inaccurate.

Transfer Learning

Triple-GAIL: A Multi-Modal Imitation Learning Framework with Generative Adversarial Nets

no code implementations19 May 2020 Cong Fei, Bin Wang, Yuzheng Zhuang, Zongzhang Zhang, Jianye Hao, Hongbo Zhang, Xuewu Ji, Wulong Liu

Generative adversarial imitation learning (GAIL) has shown promising results by taking advantage of generative adversarial nets, especially in the field of robot learning.

Autonomous Vehicles Data Augmentation +1

Efficient Deep Reinforcement Learning via Adaptive Policy Transfer

no code implementations19 Feb 2020 Tianpei Yang, Jianye Hao, Zhaopeng Meng, Zongzhang Zhang, Yujing Hu, Yingfeng Cheng, Changjie Fan, Weixun Wang, Wulong Liu, Zhaodong Wang, Jiajie Peng

Transfer Learning (TL) has shown great potential to accelerate Reinforcement Learning (RL) by leveraging prior knowledge from past learned policies of relevant tasks.

reinforcement-learning Transfer Learning

Multi-Agent Interactions Modeling with Correlated Policies

1 code implementation ICLR 2020 Minghuan Liu, Ming Zhou, Wei-Nan Zhang, Yuzheng Zhuang, Jun Wang, Wulong Liu, Yong Yu

In this paper, we cast the multi-agent interactions modeling problem into a multi-agent imitation learning framework with explicit modeling of correlated policies by approximating opponents' policies, which can recover agents' policies that can regenerate similar interactions.

Imitation Learning

Neighborhood Cognition Consistent Multi-Agent Reinforcement Learning

no code implementations3 Dec 2019 Hangyu Mao, Wulong Liu, Jianye Hao, Jun Luo, Dong Li, Zhengchao Zhang, Jun Wang, Zhen Xiao

Social psychology and real experiences show that cognitive consistency plays an important role to keep human society in order: if people have a more consistent cognition about their environments, they are more likely to achieve better cooperation.

Multi-agent Reinforcement Learning Q-Learning +1

MGHRL: Meta Goal-generation for Hierarchical Reinforcement Learning

no code implementations30 Sep 2019 Haotian Fu, Hongyao Tang, Jianye Hao, Wulong Liu, Chen Chen

Most meta reinforcement learning (meta-RL) methods learn to adapt to new tasks by directly optimizing the parameters of policies over primitive action space.

Hierarchical Reinforcement Learning Meta-Learning +2

Variational Constrained Reinforcement Learning with Application to Planning at Roundabout

no code implementations25 Sep 2019 Yuan Tian, Minghao Han, Lixian Zhang, Wulong Liu, Jun Wang, Wei Pan

In this paper, we combine variational learning and constrained reinforcement learning to simultaneously learn a Conditional Representation Model (CRM) to encode the states into safe and unsafe distributions respectively as well as to learn the corresponding safe policy.

Autonomous Driving reinforcement-learning

Graph Attention Memory for Visual Navigation

no code implementations11 May 2019 Dong Li, Qichao Zhang, Dongbin Zhao, Yuzheng Zhuang, Bin Wang, Wulong Liu, Rasul Tutunov, Jun Wang

To address the long-term memory issue, this paper proposes a graph attention memory (GAM) architecture consisting of memory construction module, graph attention module and control module.

Graph Attention reinforcement-learning +1

Cannot find the paper you are looking for? You can Submit a new open access paper.