no code implementations • 1 Aug 2024 • Xiang Fu, Xinpeng Zhang, Jixiang Ma, Peng Zhao, Shuai Lu, Xu T. Liu
We compare the optimized im2win convolution with the direct convolution and PyTorch's im2col-based convolution across the aforementioned layouts on SIMD machines.
no code implementations • 5 Jul 2024 • Ryotaro Okabe, Mouyang Cheng, Abhijatmedhi Chotrattanapituk, Nguyen Tuan Hung, Xiang Fu, Bowen Han, Yao Wang, Weiwei Xie, Robert J. Cava, Tommi S. Jaakkola, Yongqiang Cheng, Mingda Li
Since the properties of quantum materials are closely related to geometric patterns, our results indicate that SCIGEN provides a general framework for generating quantum materials candidates.
no code implementations • 29 May 2024 • Xiang Fu, Andrew Rosen, Kyle Bystrom, Rui Wang, Albert Musaelian, Boris Kozinsky, Tess Smidt, Tommi Jaakkola
In density functional theory, charge density is the core attribute of atomic systems from which all chemical properties can be derived.
no code implementations • 6 Dec 2023 • Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Sasha Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, Bichlien Nguyen, Hannes Schulz, Sarah Lewis, Chin-wei Huang, Ziheng Lu, Yichi Zhou, Han Yang, Hongxia Hao, Jielan Li, Ryota Tomioka, Tian Xie
We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset.
no code implementations • 2 Nov 2023 • Gabriel B. Margolis, Xiang Fu, Yandong Ji, Pulkit Agrawal
We show that the visual system trained with a small amount of real-world traversal data accurately predicts physical parameters.
no code implementations • 20 Oct 2023 • Xiang Fu, Albert Musaelian, Anders Johansson, Tommi Jaakkola, Boris Kozinsky
When running MD, the MTS integrator then evaluates the smaller model for every time step and the larger model less frequently, accelerating simulation.
no code implementations • 16 Oct 2023 • Xiang Fu, Tian Xie, Andrew S. Rosen, Tommi Jaakkola, Jake Smith
Metal-organic frameworks (MOFs) are of immense interest in applications such as gas storage and carbon capture due to their exceptional porosity and tunable chemistry.
no code implementations • 11 Oct 2023 • Yizhi Wang, Shichuan Xue, Yaxuan Wang, Jiangfang Ding, Weixu Shi, Dongyang Wang, Yong liu, Yingwen Liu, Xiang Fu, Guangyao Huang, Anqi Huang, Mingtang Deng, Junjie Wu
Our work opens up a vista of utilizing QNG in photonics to implement practical near-term quantum applications.
no code implementations • 1 Oct 2023 • Yizhi Wang, Shichuan Xue, Yaxuan Wang, Yong liu, Jiangfang Ding, Weixu Shi, Dongyang Wang, Yingwen Liu, Xiang Fu, Guangyao Huang, Anqi Huang, Mingtang Deng, Junjie Wu
Quantum Generative Adversarial Networks (QGANs), an intersection of quantum computing and machine learning, have attracted widespread attention due to their potential advantages over classical analogs.
1 code implementation • 17 Jul 2023 • Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang, Haiyang Yu, Yuqing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du, Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay, Tommi Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, Shuiwang Ji
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences.
1 code implementation • 13 Oct 2022 • Xiang Fu, Zhenghao Wu, Wujie Wang, Tian Xie, Sinan Keten, Rafael Gomez-Bombarelli, Tommi Jaakkola
We benchmark a collection of state-of-the-art (SOTA) ML FF models and illustrate, in particular, how the commonly benchmarked force accuracy is not well aligned with relevant simulation metrics.
1 code implementation • 21 Apr 2022 • Xiang Fu, Tian Xie, Nathan J. Rebello, Bradley D. Olsen, Tommi Jaakkola
Molecular dynamics (MD) simulation is essential for various scientific domains but computationally expensive.
no code implementations • NeurIPS Workshop AI4Scien 2021 • Benson Chen, Xiang Fu, Regina Barzilay, Tommi Jaakkola
Equipped with the learned fragment vocabulary, we propose Fragment-based Sequential Translation (FaST), which learns a reinforcement learning (RL) policy to iteratively translate model-discovered molecules into increasingly novel molecules while satisfying desired properties.
4 code implementations • ICLR 2022 • Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, Tommi Jaakkola
Generating the periodic structure of stable materials is a long-standing challenge for the material design community.
1 code implementation • 29 Jun 2021 • Xiang Fu, Ge Yang, Pulkit Agrawal, Tommi Jaakkola
Current model-based reinforcement learning methods struggle when operating from complex visual scenes due to their inability to prioritize task-relevant features.
Model-based Reinforcement Learning reinforcement-learning +1
no code implementations • 29 Dec 2020 • Lifang Deng, Jin Niu, Angulia Yang, Qidi Xu, Xiang Fu, Jiandong Zhang, AnXiang Zeng
In this work, we propose the Hybrid Interest Modeling (HIM) network to hybrid both personalized interest and semi-personalized interest in learning long-tailed users' preferences in the recommendation.
1 code implementation • 16 Dec 2019 • Yong Liu, Dongyang Wang, Shichuan Xue, Anqi Huang, Xiang Fu, Xiaogang Qiang, Ping Xu, He-Liang Huang, Mingtang Deng, Chu Guo, Xuejun Yang, Junjie Wu
We demonstrate our method by performing numerical simulations for the tomography of the ground state of a one-dimensional quantum spin chain, using a variational quantum circuit simulator.
1 code implementation • 6 Feb 2019 • Xiang Fu, Shangdi Yu, Austin R. Benson
Large Question-and-Answer (Q&A) platforms support diverse knowledge curation on the Web.
1 code implementation • ICCV 2015 • Xiang Fu, Chien-Yi Wang, Chen Chen, Changhu Wang, C. -C. Jay Kuo
The contour-guided color palette (CCP) is proposed for robust image segmentation.