1 code implementation • 14 Mar 2018 • Holger R. Roth, Hirohisa ODA, Xiangrong Zhou, Natsuki Shimizu, Ying Yang, Yuichiro Hayashi, Masahiro Oda, Michitaka Fujiwara, Kazunari Misawa, Kensaku MORI
In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models.
Ranked #2 on 3D Medical Imaging Segmentation on TCIA Pancreas-CT