Search Results for author: Xiangtao Kong

Found 13 papers, 11 papers with code

InstructRestore: Region-Customized Image Restoration with Human Instructions

1 code implementation31 Mar 2025 Shuaizheng Liu, jianqi ma, Lingchen Sun, Xiangtao Kong, Lei Zhang

To achieve this, we first develop a data generation engine to produce training triplets, each consisting of a high-quality image, the target region description, and the corresponding region mask.

Image Restoration

Toward Generalizing Visual Brain Decoding to Unseen Subjects

1 code implementation18 Oct 2024 Xiangtao Kong, Kexin Huang, Ping Li, Lei Zhang

Prior works typically focus on decoding brain activity of individuals based on the observation that different subjects exhibit different brain activities, while it remains unclear whether brain decoding can be generalized to unseen subjects.

Brain Decoding

Training on the Benchmark Is Not All You Need

1 code implementation3 Sep 2024 Shiwen Ni, Xiangtao Kong, Chengming Li, Xiping Hu, Ruifeng Xu, Jia Zhu, Min Yang

The success of Large Language Models (LLMs) relies heavily on the huge amount of pre-training data learned in the pre-training phase.

All Multiple-choice

A Preliminary Exploration Towards General Image Restoration

no code implementations27 Aug 2024 Xiangtao Kong, Jinjin Gu, Yihao Liu, Wenlong Zhang, Xiangyu Chen, Yu Qiao, Chao Dong

Existing deep models, tailored for specific individual image restoration tasks, often fall short in effectively addressing these challenges.

Deblurring Image Denoising +3

E-EVAL: A Comprehensive Chinese K-12 Education Evaluation Benchmark for Large Language Models

1 code implementation29 Jan 2024 Jinchang Hou, Chang Ao, Haihong Wu, Xiangtao Kong, Zhigang Zheng, Daijia Tang, Chengming Li, Xiping Hu, Ruifeng Xu, Shiwen Ni, Min Yang

The integration of LLMs and education is getting closer and closer, however, there is currently no benchmark for evaluating LLMs that focuses on the Chinese K-12 education domain.

Ethics Multiple-choice

Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild

no code implementations CVPR 2024 Fanghua Yu, Jinjin Gu, Zheyuan Li, JinFan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, Chao Dong

We introduce SUPIR (Scaling-UP Image Restoration), a groundbreaking image restoration method that harnesses generative prior and the power of model scaling up.

Descriptive Image Restoration

Towards Effective Multiple-in-One Image Restoration: A Sequential and Prompt Learning Strategy

2 code implementations7 Jan 2024 Xiangtao Kong, Chao Dong, Lei Zhang

While single task image restoration (IR) has achieved significant successes, it remains a challenging issue to train a single model which can tackle multiple IR tasks.

Image Restoration Prompt Learning

HAT: Hybrid Attention Transformer for Image Restoration

2 code implementations11 Sep 2023 Xiangyu Chen, Xintao Wang, Wenlong Zhang, Xiangtao Kong, Yu Qiao, Jiantao Zhou, Chao Dong

In the training stage, we additionally adopt a same-task pre-training strategy to further exploit the potential of the model for further improvement.

Image Compression Image Denoising +2

DegAE: A New Pretraining Paradigm for Low-Level Vision

1 code implementation CVPR 2023 Yihao Liu, Jingwen He, Jinjin Gu, Xiangtao Kong, Yu Qiao, Chao Dong

However, we argue that pretraining is more significant for high-cost tasks, where data acquisition is more challenging.

Philosophy

Reflash Dropout in Image Super-Resolution

1 code implementation CVPR 2022 Xiangtao Kong, Xina Liu, Jinjin Gu, Yu Qiao, Chao Dong

Dropout is designed to relieve the overfitting problem in high-level vision tasks but is rarely applied in low-level vision tasks, like image super-resolution (SR).

Common Sense Reasoning Image Super-Resolution +1

ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

3 code implementations CVPR 2021 Xiangtao Kong, Hengyuan Zhao, Yu Qiao, Chao Dong

On this basis, we propose a new solution pipeline -- ClassSR that combines classification and SR in a unified framework.

2k 8k +3

Efficient Image Super-Resolution Using Pixel Attention

1 code implementation2 Oct 2020 Hengyuan Zhao, Xiangtao Kong, Jingwen He, Yu Qiao, Chao Dong

Pixel attention (PA) is similar as channel attention and spatial attention in formulation.

Image Super-Resolution

Cannot find the paper you are looking for? You can Submit a new open access paper.