no code implementations • 7 Jul 2022 • Xiangxi Meng, Yuning Gu, Yongsheng Pan, Nizhuan Wang, Peng Xue, Mengkang Lu, Xuming He, Yiqiang Zhan, Dinggang Shen
Multi-modal medical image completion has been extensively applied to alleviate the missing modality issue in a wealth of multi-modal diagnostic tasks.
2 code implementations • IEEE Transactions on Medical Imaging 2022 • Mufeng Geng, Xiangxi Meng, Jiangyuan Yu, Lei Zhu, Lujia Jin, Zhe Jiang, Bin Qiu, Hui Li, Hanjing Kong, Jianmin Yuan, Kun Yang, Hongming Shan, Hongbin Han, Zhi Yang, Qiushi Ren, Yanye Lu
In this study, we propose a simple yet effective strategy, the content-noise complementary learning (CNCL) strategy, in which two deep learning predictors are used to learn the respective content and noise of the image dataset complementarily.
1 code implementation • 29 Dec 2021 • Lei Zhu, Qi She, Qian Chen, Xiangxi Meng, Mufeng Geng, Lujia Jin, Zhe Jiang, Bin Qiu, Yunfei You, Yibao Zhang, Qiushi Ren, Yanye Lu
In our B-CAM, two image-level features, aggregated by pixel-level features of potential background and object locations, are used to purify the object feature from the object-related background and to represent the feature of the pure-background sample, respectively.
1 code implementation • 23 Jun 2021 • Mengdi Gao, Ximeng Feng, Mufeng Geng, Zhe Jiang, Lei Zhu, Xiangxi Meng, Chuanqing Zhou, Qiushi Ren, Yanye Lu
BLRM utilizes maximum a posteriori probability (MAP) in the Bayesian statistics and the exponentially time-weighted technique to selectively correct the labels of noisy images.