1 code implementation • 3 Mar 2023 • Ryan Liu, Paolo Calafiura, Steven Farrell, Xiangyang Ju, Daniel Thomas Murnane, Tuan Minh Pham
We introduce a novel variant of GNN for particle tracking called Hierarchical Graph Neural Network (HGNN).
no code implementations • 21 Oct 2022 • Xiangyang Ju, Yunsong Wang, Daniel Murnane, Nicholas Choma, Steven Farrell, Paolo Calafiura
Many artificial intelligence (AI) devices have been developed to accelerate the training and inference of neural networks models.
no code implementations • 12 Aug 2022 • Vincent Dumont, Xiangyang Ju, Juliane Mueller
We show that given proper hyperparameter tuning, we can find GANs that provide high-quality approximations of the desired quantities.
2 code implementations • 11 Mar 2021 • Xiangyang Ju, Daniel Murnane, Paolo Calafiura, Nicholas Choma, Sean Conlon, Steve Farrell, Yaoyuan Xu, Maria Spiropulu, Jean-Roch Vlimant, Adam Aurisano, Jeremy Hewes, Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Markus Atkinson, Mark Neubauer, Gage DeZoort, Savannah Thais, Aditi Chauhan, Alex Schuy, Shih-Chieh Hsu, Alex Ballow, and Alina Lazar
The Exa. TrkX project has applied geometric learning concepts such as metric learning and graph neural networks to HEP particle tracking.
no code implementations • 10 Mar 2021 • Jeremy Hewes, Adam Aurisano, Giuseppe Cerati, Jim Kowalkowski, Claire Lee, Wei-keng Liao, Alexandra Day, Angrit Agrawal, Maria Spiropulu, Jean-Roch Vlimant, Lindsey Gray, Thomas Klijnsma, Paolo Calafiura, Sean Conlon, Steve Farrell, Xiangyang Ju, Daniel Murnane
This paper presents a graph neural network (GNN) technique for low-level reconstruction of neutrino interactions in a Liquid Argon Time Projection Chamber (LArTPC).
Object Reconstruction
High Energy Physics - Experiment
no code implementations • 8 Dec 2020 • Patrick J. Fox, Shangqing Huang, Joshua Isaacson, Xiangyang Ju, Benjamin Nachman
The shape of clusters provides an additional dimension for track seeding that can significantly reduce the combinatorial challenge of track finding.
1 code implementation • 13 Aug 2020 • Xiangyang Ju, Benjamin Nachman
By labeling simulated final state hadrons as descending from an uncolored particle, it is possible to train a supervised learning method to create boson jets.
High Energy Physics - Phenomenology High Energy Physics - Experiment Data Analysis, Statistics and Probability
no code implementations • 30 Jun 2020 • Nicholas Choma, Daniel Murnane, Xiangyang Ju, Paolo Calafiura, Sean Conlon, Steven Farrell, Prabhat, Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Panagiotis Spentzouris, Jean-Roch Vlimant, Maria Spiropulu, Adam Aurisano, Jeremy Hewes, Aristeidis Tsaris, Kazuhiro Terao, Tracy Usher
Detector information can be associated with nodes and edges, enabling a GNN to propagate the embedded parameters around the graph and predict node-, edge- and graph-level observables.
no code implementations • 25 Mar 2020 • Xiangyang Ju, Steven Farrell, Paolo Calafiura, Daniel Murnane, Prabhat, Lindsey Gray, Thomas Klijnsma, Kevin Pedro, Giuseppe Cerati, Jim Kowalkowski, Gabriel Perdue, Panagiotis Spentzouris, Nhan Tran, Jean-Roch Vlimant, Alexander Zlokapa, Joosep Pata, Maria Spiropulu, Sitong An, Adam Aurisano, Jeremy Hewes, Aristeidis Tsaris, Kazuhiro Terao, Tracy Usher
Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision.
Instrumentation and Detectors High Energy Physics - Experiment Computational Physics Data Analysis, Statistics and Probability
1 code implementation • 3 Jul 2015 • Daniel Abercrombie, Nural Akchurin, Ece Akilli, Juan Alcaraz Maestre, Brandon Allen, Barbara Alvarez Gonzalez, Jeremy Andrea, Alexandre Arbey, Georges Azuelos, Patrizia Azzi, Mihailo Backović, Yang Bai, Swagato Banerjee, James Beacham, Alexander Belyaev, Antonio Boveia, Amelia Jean Brennan, Oliver Buchmueller, Matthew R. Buckley, Giorgio Busoni, Michael Buttignol, Giacomo Cacciapaglia, Regina Caputo, Linda Carpenter, Nuno Filipe Castro, Guillelmo Gomez Ceballos, Yangyang Cheng, John Paul Chou, Arely Cortes Gonzalez, Chris Cowden, Francesco D'Eramo, Annapaola De Cosa, Michele De Gruttola, Albert De Roeck, Andrea De Simone, Aldo Deandrea, Zeynep Demiragli, Anthony DiFranzo, Caterina Doglioni, Tristan du Pree, Robin Erbacher, Johannes Erdmann, Cora Fischer, Henning Flaecher, Patrick J. Fox, Benjamin Fuks, Marie-Helene Genest, Bhawna Gomber, Andreas Goudelis, Johanna Gramling, John Gunion, Kristian Hahn, Ulrich Haisch, Roni Harnik, Philip C. Harris, Kerstin Hoepfner, Siew Yan Hoh, Dylan George Hsu, Shih-Chieh Hsu, Yutaro Iiyama, Valerio Ippolito, Thomas Jacques, Xiangyang Ju, Felix Kahlhoefer, Alexis Kalogeropoulos, Laser Seymour Kaplan, Lashkar Kashif, Valentin V. Khoze, Raman Khurana, Khristian Kotov, Dmytro Kovalskyi, Suchita Kulkarni, Shuichi Kunori, Viktor Kutzner, Hyun Min Lee, Sung-Won Lee, Seng Pei Liew, Tongyan Lin, Steven Lowette, Romain Madar, Sarah Malik, Fabio Maltoni, Mario Martinez Perez, Olivier Mattelaer, Kentarou Mawatari, Christopher McCabe, Théo Megy, Enrico Morgante, Stephen Mrenna, Siddharth M. Narayanan, Andy Nelson, Sérgio F. Novaes, Klaas Ole Padeken, Priscilla Pani, Michele Papucci, Manfred Paulini, Christoph Paus, Jacopo Pazzini, Björn Penning, Michael E. Peskin, Deborah Pinna, Massimiliano Procura, Shamona F. Qazi, Davide Racco, Emanuele Re, Antonio Riotto, Thomas G. Rizzo, Rainer Roehrig, David Salek, Arturo Sanchez Pineda, Subir Sarkar, Alexander Schmidt, Steven Randolph Schramm, William Shepherd, Gurpreet Singh, Livia Soffi, Norraphat Srimanobhas, Kevin Sung, Tim M. P. Tait, Timothee Theveneaux-Pelzer, Marc Thomas, Mia Tosi, Daniele Trocino, Sonaina Undleeb, Alessandro Vichi, Fuquan Wang, Lian-Tao Wang, Ren-Jie Wang, Nikola Whallon, Steven Worm, Mengqing Wu, Sau Lan Wu, Hongtao Yang, Yong Yang, Shin-Shan Yu, Bryan Zaldivar, Marco Zanetti, Zhiqing Zhang, Alberto Zucchetta
This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches.
High Energy Physics - Experiment High Energy Physics - Phenomenology