Search Results for author: Xianyan Jia

Found 7 papers, 2 papers with code

M6-10T: A Sharing-Delinking Paradigm for Efficient Multi-Trillion Parameter Pretraining

no code implementations8 Oct 2021 Junyang Lin, An Yang, Jinze Bai, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie Zhang, Yong Li, Wei Lin, Jingren Zhou, Hongxia Yang

Recent expeditious developments in deep learning algorithms, distributed training, and even hardware design for large models have enabled training extreme-scale models, say GPT-3 and Switch Transformer possessing hundreds of billions or even trillions of parameters.

M6-T: Exploring Sparse Expert Models and Beyond

no code implementations31 May 2021 An Yang, Junyang Lin, Rui Men, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie Zhang, Jiamang Wang, Yong Li, Di Zhang, Wei Lin, Lin Qu, Jingren Zhou, Hongxia Yang

Mixture-of-Experts (MoE) models can achieve promising results with outrageous large amount of parameters but constant computation cost, and thus it has become a trend in model scaling.

M6: A Chinese Multimodal Pretrainer

no code implementations1 Mar 2021 Junyang Lin, Rui Men, An Yang, Chang Zhou, Ming Ding, Yichang Zhang, Peng Wang, Ang Wang, Le Jiang, Xianyan Jia, Jie Zhang, Jianwei Zhang, Xu Zou, Zhikang Li, Xiaodong Deng, Jie Liu, Jinbao Xue, Huiling Zhou, Jianxin Ma, Jin Yu, Yong Li, Wei Lin, Jingren Zhou, Jie Tang, Hongxia Yang

In this work, we construct the largest dataset for multimodal pretraining in Chinese, which consists of over 1. 9TB images and 292GB texts that cover a wide range of domains.

Image Generation

EasyTransfer -- A Simple and Scalable Deep Transfer Learning Platform for NLP Applications

2 code implementations18 Nov 2020 Minghui Qiu, Peng Li, Chengyu Wang, Hanjie Pan, Ang Wang, Cen Chen, Xianyan Jia, Yaliang Li, Jun Huang, Deng Cai, Wei Lin

The literature has witnessed the success of leveraging Pre-trained Language Models (PLMs) and Transfer Learning (TL) algorithms to a wide range of Natural Language Processing (NLP) applications, yet it is not easy to build an easy-to-use and scalable TL toolkit for this purpose.

Conversational Question Answering Transfer Learning

Highly Scalable Deep Learning Training System with Mixed-Precision: Training ImageNet in Four Minutes

no code implementations30 Jul 2018 Xianyan Jia, Shutao Song, wei he, Yangzihao Wang, Haidong Rong, Feihu Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, Tiegang Chen, Guangxiao Hu, Shaohuai Shi, Xiaowen Chu

(3) We propose highly optimized all-reduce algorithms that achieve up to 3x and 11x speedup on AlexNet and ResNet-50 respectively than NCCL-based training on a cluster with 1024 Tesla P40 GPUs.

BigDL: A Distributed Deep Learning Framework for Big Data

2 code implementations16 Apr 2018 Jason Dai, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang, Yanzhang Wang, Xianyan Jia, Cherry Zhang, Yan Wan, Zhichao Li, Jiao Wang, Shengsheng Huang, Zhongyuan Wu, Yang Wang, Yuhao Yang, Bowen She, Dongjie Shi, Qi Lu, Kai Huang, Guoqiong Song

This paper presents BigDL (a distributed deep learning framework for Apache Spark), which has been used by a variety of users in the industry for building deep learning applications on production big data platforms.

Fraud Detection Object Detection

Sentiment Analysis for Twitter : Going Beyond Tweet Text

no code implementations29 Nov 2016 Lahari Poddar, Kishaloy Halder, Xianyan Jia

Analysing sentiment of tweets is important as it helps to determine the users' opinion.

Sentiment Analysis

Cannot find the paper you are looking for? You can Submit a new open access paper.