4 code implementations • ECCV 2020 • Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiao-Wei Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, Yejin Choi, Jianfeng Gao
Large-scale pre-training methods of learning cross-modal representations on image-text pairs are becoming popular for vision-language tasks.
Ranked #1 on Image Retrieval on MS COCO (Recall@10 metric)
3 code implementations • CVPR 2020 • Tianyu Wang, Xiao-Wei Hu, Qiong Wang, Pheng-Ann Heng, Chi-Wing Fu
Then, we pair up the predicted shadow and object instances, and match them with the predicted shadow-object associations to generate the final results.
Ranked #3 on Instance Shadow Detection on SOBA
1 code implementation • 4 Nov 2019 • Xiaomeng Li, Xiao-Wei Hu, Lequan Yu, Lei Zhu, Chi-Wing Fu, Pheng-Ann Heng
In this paper, we present a novel cross-disease attention network (CANet) to jointly grade DR and DME by exploring the internal relationship between the diseases with only image-level supervision.
1 code implementation • 3 Jul 2019 • Yi Wang, Haoran Dou, Xiao-Wei Hu, Lei Zhu, Xin Yang, Ming Xu, Jing Qin, Pheng-Ann Heng, Tianfu Wang, Dong Ni
Our attention module utilizes the attention mechanism to selectively leverage the multilevel features integrated from different layers to refine the features at each individual layer, suppressing the non-prostate noise at shallow layers of the CNN and increasing more prostate details into features at deep layers.
1 code implementation • ECCV 2018 • Lei Zhu, Zijun Deng, Xiao-Wei Hu, Chi-Wing Fu, Xuemiao Xu, Jing Qin, Pheng-Ann Heng
Second, we develop a bidirectional feature pyramid network (BFPN) to aggregate shadow contexts spanned across different CNN layers by deploying two series of RAR modules in the network to iteratively combine and refine context features: one series to refine context features from deep to shallow layers, and another series from shallow to deep layers.
Ranked #6 on Shadow Detection on SBU / SBU-Refine
3 code implementations • CVPR 2017 • Yun Liu, Ming-Ming Cheng, Xiao-Wei Hu, Kai Wang, Xiang Bai
Using VGG16 network, we achieve \sArt results on several available datasets.
Ranked #5 on Edge Detection on BIPED
4 code implementations • CVPR 2017 • Qibin Hou, Ming-Ming Cheng, Xiao-Wei Hu, Ali Borji, Zhuowen Tu, Philip Torr
Recent progress on saliency detection is substantial, benefiting mostly from the explosive development of Convolutional Neural Networks (CNNs).
Ranked #4 on RGB Salient Object Detection on SBU / SBU-Refine