Search Results for author: Xiaodong Wu

Found 33 papers, 2 papers with code

LIFBench: Evaluating the Instruction Following Performance and Stability of Large Language Models in Long-Context Scenarios

no code implementations11 Nov 2024 Xiaodong Wu, Minhao Wang, Yichen Liu, Xiaoming Shi, He Yan, Xiangju Lu, Junmin Zhu, Wei zhang

As Large Language Models (LLMs) continue to advance in natural language processing (NLP), their ability to stably follow instructions in long-context inputs has become crucial for real-world applications.

Instruction Following

Denoising Diffusions in Latent Space for Medical Image Segmentation

no code implementations17 Jul 2024 Fahim Ahmed Zaman, Mathews Jacob, Amanda Chang, Kan Liu, Milan Sonka, Xiaodong Wu

In case of medical imaging, often times the images are large 3D scans, where segmenting one image using DPMs become extremely inefficient due to large memory consumption and time consuming iterative sampling process.

Image Denoising Image Generation +4

An Improved Empirical Fisher Approximation for Natural Gradient Descent

no code implementations10 Jun 2024 Xiaodong Wu, Wenyi Yu, Chao Zhang, Philip Woodland

Approximate Natural Gradient Descent (NGD) methods are an important family of optimisers for deep learning models, which use approximate Fisher information matrices to pre-condition gradients during training.

parameter-efficient fine-tuning

Manipulating Predictions over Discrete Inputs in Machine Teaching

no code implementations31 Jan 2024 Xiaodong Wu, Yufei Han, Hayssam Dahrouj, Jianbing Ni, Zhenwen Liang, Xiangliang Zhang

Machine teaching often involves the creation of an optimal (typically minimal) dataset to help a model (referred to as the `student') achieve specific goals given by a teacher.

Combinatorial Optimization

Surf-CDM: Score-Based Surface Cold-Diffusion Model For Medical Image Segmentation

no code implementations19 Dec 2023 Fahim Ahmed Zaman, Mathews Jacob, Amanda Chang, Kan Liu, Milan Sonka, Xiaodong Wu

Diffusion models have shown impressive performance for image generation, often times outperforming other generative models.

Image Denoising Image Generation +4

Diagnosis Of Takotsubo Syndrome By Robust Feature Selection From The Complex Latent Space Of DL-based Segmentation Network

no code implementations19 Dec 2023 Fahim Ahmed Zaman, Wahidul Alam, Tarun Kanti Roy, Amanda Chang, Kan Liu, Xiaodong Wu

However, directly using classification or segmentation models on medical to learn latent features opt out robust feature selection and may lead to overfitting.

Disease Prediction feature selection

gcDLSeg: Integrating Graph-cut into Deep Learning for Binary Semantic Segmentation

no code implementations7 Dec 2023 Hui Xie, Weiyu Xu, Ya Xing Wang, John Buatti, Xiaodong Wu

To combine the strengths of both approaches, we propose in this study to integrate the graph-cut approach into a deep learning network for end-to-end learning.

Segmentation Semantic Segmentation

Trust, but Verify: Robust Image Segmentation using Deep Learning

no code implementations25 Oct 2023 Fahim Ahmed Zaman, Xiaodong Wu, Weiyu Xu, Milan Sonka, Raghuraman Mudumbai

We describe a method for verifying the output of a deep neural network for medical image segmentation that is robust to several classes of random as well as worst-case perturbations i. e. adversarial attacks.

Deep Learning Image Segmentation +3

Outlier Detection Using Generative Models with Theoretical Performance Guarantees

no code implementations16 Oct 2023 Jirong Yi, Jingchao Gao, Tianming Wang, Xiaodong Wu, Weiyu Xu

We propose an outlier detection approach for reconstructing the ground-truth signals modeled by generative models under sparse outliers.

Outlier Detection

Unveiling Security, Privacy, and Ethical Concerns of ChatGPT

no code implementations26 Jul 2023 Xiaodong Wu, Ran Duan, Jianbing Ni

This paper delves into the realm of ChatGPT, an AI-powered chatbot that utilizes topic modeling and reinforcement learning to generate natural responses.

Chatbot Ethics

Provable Multi-instance Deep AUC Maximization with Stochastic Pooling

1 code implementation14 May 2023 Dixian Zhu, Bokun Wang, Zhi Chen, Yaxing Wang, Milan Sonka, Xiaodong Wu, Tianbao Yang

This paper considers a novel application of deep AUC maximization (DAM) for multi-instance learning (MIL), in which a single class label is assigned to a bag of instances (e. g., multiple 2D slices of a CT scan for a patient).

Stochastic Optimization

A deep learning network with differentiable dynamic programming for retina OCT surface segmentation

no code implementations8 Oct 2022 Hui Xie, Weiyu Xu, Xiaodong Wu

Unfortunately, due to the scarcity of training data in medical imaging, it is challenging for DL networks to learn the global structure of the target surfaces, including surface smoothness.

Model Optimization Segmentation

Benchmarking Deep AUROC Optimization: Loss Functions and Algorithmic Choices

no code implementations27 Mar 2022 Dixian Zhu, Xiaodong Wu, Tianbao Yang

(i) We benchmark a variety of loss functions with different algorithmic choices for deep AUROC optimization problem.

Benchmarking imbalanced classification

When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee

no code implementations1 Mar 2022 Dixian Zhu, Gang Li, Bokun Wang, Xiaodong Wu, Tianbao Yang

In this paper, we propose systematic and efficient gradient-based methods for both one-way and two-way partial AUC (pAUC) maximization that are applicable to deep learning.

Deep Learning

Joint Calibrationless Reconstruction and Segmentation of Parallel MRI

no code implementations19 May 2021 Aniket Pramanik, Xiaodong Wu, Mathews Jacob

We introduce a novel image domain deep-learning framework for calibrationless parallel MRI reconstruction, coupled with a segmentation network to improve image quality and to reduce the vulnerability of current segmentation algorithms to image artifacts resulting from acceleration.

MRI Reconstruction Segmentation

Learning Similarity between Movie Characters and Its Potential Implications on Understanding Human Experiences

no code implementations NAACL (NUSE) 2021 Zhilin Wang, Weizhe Lin, Xiaodong Wu

While many different aspects of human experiences have been studied by the NLP community, none has captured its full richness.

Optimal Pooling Matrix Design for Group Testing with Dilution (Row Degree) Constraints

no code implementations5 Aug 2020 Jirong Yi, Myung Cho, Xiaodong Wu, Raghu Mudumbai, Weiyu Xu

In this paper, we consider the problem of designing optimal pooling matrix for group testing (for example, for COVID-19 virus testing) with the constraint that no more than $r>0$ samples can be pooled together, which we call "dilution constraint".

Globally Optimal Segmentation of Mutually Interacting Surfaces using Deep Learning

no code implementations2 Jul 2020 Hui Xie, Zhe Pan, Leixin Zhou, Fahim A Zaman, Danny Chen, Jost B Jonas, Yaxing Wang, Xiaodong Wu

In this work, we propose to parameterize the surface cost functions in the graph model and leverage DL to learn those parameters.

Deep Learning Image Segmentation +3

Globally Optimal Surface Segmentation using Deep Learning with Learnable Smoothness Priors

no code implementations2 Jul 2020 Leixin Zhou, Xiaodong Wu

Automated surface segmentation is important and challenging in many medical image analysis applications.

Medical Image Analysis Object +2

Unsupervised anomaly localization using VAE and beta-VAE

no code implementations19 May 2020 Leixin Zhou, Wenxiang Deng, Xiaodong Wu

An VAE trained on normal images is expected to only be able to reconstruct normal images, allowing the localization of anomalous pixels in an image via manipulating information within the VAE ELBO loss.

Anomaly Localization

No, you're not alone: A better way to find people with similar experiences on Reddit

no code implementations WS 2019 Zhilin Wang, Elena Rastorgueva, Weizhe Lin, Xiaodong Wu

This model is built upon the BERT Next Sentence Prediction model and reduces the time complexity for clustering all posts in a corpus from O(n{\^{}}2) to O(n) with respect to the number of posts.

Clustering Sentence

Deep Neural Networks for Surface Segmentation Meet Conditional Random Fields

no code implementations11 Jun 2019 Leixin Zhou, Zisha Zhong, Abhay Shah, Bensheng Qiu, John Buatti, Xiaodong Wu

To the best of our knowledge, this is the first study to apply a 3-D neural network with a CRFs model for direct surface segmentation.

Medical Image Analysis Object +2

Trust but Verify: An Information-Theoretic Explanation for the Adversarial Fragility of Machine Learning Systems, and a General Defense against Adversarial Attacks

no code implementations25 May 2019 Jirong Yi, Hui Xie, Leixin Zhou, Xiaodong Wu, Weiyu Xu, Raghuraman Mudumbai

In this paper, we present a simple hypothesis about a feature compression property of artificial intelligence (AI) classifiers and present theoretical arguments to show that this hypothesis successfully accounts for the observed fragility of AI classifiers to small adversarial perturbations.

Feature Compression

Deep segmentation networks predict survival of non-small cell lung cancer

1 code implementation26 Mar 2019 Stephen Baek, Yusen He, Bryan G. Allen, John M. Buatti, Brian J. Smith, Ling Tong, Zhiyu Sun, Jia Wu, Maximilian Diehn, Billy W. Loo, Kristin A. Plichta, Steven N. Seyedin, Maggie Gannon, Katherine R. Cabel, Yusung Kim, Xiaodong Wu

Here we show that CNN trained to perform the tumor segmentation task, with no other information than physician contours, identify a rich set of survival-related image features with remarkable prognostic value.

Segmentation Tumor Segmentation

Robust Image Segmentation Quality Assessment

no code implementations MIDL 2019 Leixin Zhou, Wenxiang Deng, Xiaodong Wu

Deep learning based image segmentation methods have achieved great success, even having human-level accuracy in some applications.

Image Segmentation Segmentation +1

Outlier Detection using Generative Models with Theoretical Performance Guarantees

no code implementations26 Oct 2018 Jirong Yi, Anh Duc Le, Tianming Wang, Xiaodong Wu, Weiyu Xu

In this paper, we propose a generative model neural network approach for reconstructing the ground truth signals under sparse outliers.

Outlier Detection

Optimal Multi-Object Segmentation with Novel Gradient Vector Flow Based Shape Priors

no code implementations22 May 2017 Junjie Bai, Abhay Shah, Xiaodong Wu

Shape priors have been widely utilized in medical image segmentation to improve segmentation accuracy and robustness.

Image Segmentation Medical Image Segmentation +2

Simultaneous Multiple Surface Segmentation Using Deep Learning

no code implementations19 May 2017 Abhay Shah, Michael Abramoff, Xiaodong Wu

The task of automatically segmenting 3-D surfaces representing boundaries of objects is important for quantitative analysis of volumetric images, and plays a vital role in biomedical image analysis.

Deep Learning Segmentation

Optimal Surface Segmentation with Convex Priors in Irregularly Sampled Space

no code implementations9 Nov 2016 Abhay Shah, Michael D. Abramoff, Xiaodong Wu

Optimal surface segmentation is a state-of-the-art method used for segmentation of multiple globally optimal surfaces in volumetric datasets.

Image Segmentation Medical Image Segmentation +3

Error-tolerant Scribbles Based Interactive Image Segmentation

no code implementations CVPR 2014 Junjie Bai, Xiaodong Wu

The experimental results show that the proposed algorithm is robust to the errors in the user input and preserves the "anchoring" capability of the user input.

Image Segmentation Interactive Segmentation +2

Cannot find the paper you are looking for? You can Submit a new open access paper.