no code implementations • SemEval (NAACL) 2022 • Zhou Mengyuan, Dou Hu, Mengfei Yuan, Jin Zhi, Xiyang Du, Lianxin Jiang, Yang Mo, Xiaofeng Shi
This paper describes our system used in the SemEval-2022 Task 7(Roth et al.): Identifying Plausible Clarifications of Implicit and Under-specified Phrases.
no code implementations • SemEval (NAACL) 2022 • Jin Zhi, Zhou Mengyuan, Mengfei Yuan, Dou Hu, Xiyang Du, Lianxin Jiang, Yang Mo, Xiaofeng Shi
This paper describes our system used in the SemEval-2022 Task 5: Multimedia Automatic Misogyny Identification (MAMI).
no code implementations • SemEval (NAACL) 2022 • Xiyang Du, Dou Hu, Jin Zhi, Lianxin Jiang, Xiaofeng Shi
This paper describes the method we utilized in the SemEval-2022 Task 6 iSarcasmEval: Intended Sarcasm Detection In English and Arabic.
no code implementations • SemEval (NAACL) 2022 • Mengfei Yuan, Zhou Mengyuan, Lianxin Jiang, Yang Mo, Xiaofeng Shi
This paper describes the systematic approach applied in “SemEval-2022 Task 6 (iSarcasmEval) : Intended Sarcasm Detection in English and Arabic”.
no code implementations • 18 Jun 2024 • Lulu Zhao, Weihao Zeng, Xiaofeng Shi, Hua Zhou, Donglin Hao, Yonghua Lin
We construct a large-scale Chinese and English medical dataset for continue pre-training and a high-quality SFT dataset, covering extensive medical specialties.
no code implementations • 1 Nov 2022 • Dou Hu, Xiaolong Hou, Xiyang Du, Mengyuan Zhou, Lianxin Jiang, Yang Mo, Xiaofeng Shi
Pre-trained language models have achieved promising performance on general benchmarks, but underperform when migrated to a specific domain.
no code implementations • SemEval (NAACL) 2022 • Dou Hu, Mengyuan Zhou, Xiyang Du, Mengfei Yuan, Meizhi Jin, Lianxin Jiang, Yang Mo, Xiaofeng Shi
Patronizing and condescending language (PCL) has a large harmful impact and is difficult to detect, both for human judges and existing NLP systems.
Ranked #1 on Binary Condescension Detection on DPM
Binary Condescension Detection Multi-label Condescension Detection +2