no code implementations • 9 Jun 2024 • Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, Wotao Yin
In this work, we investigate the expressive or representative power of GNNs, a crucial aspect of neural network theory, specifically in the context of QP tasks, with both continuous and mixed-integer settings.
no code implementations • 24 May 2024 • Xiaohan Chen, Jialin Liu, Wotao Yin
Learning to Optimize (L2O) stands at the intersection of traditional optimization and machine learning, utilizing the capabilities of machine learning to enhance conventional optimization techniques.
1 code implementation • Control Engineering Practice 2024 • Xiaohan Chen, Rui Yang, Yihao Xue, Baoye Song, Zidong Wang
Recent advances in intelligent rotating machinery fault diagnosis have been enabled by the availability of massive labeled training data.
no code implementations • 11 Feb 2024 • Ziang Chen, Jialin Liu, Xiaohan Chen, Xinshang Wang, Wotao Yin
In the literature, message-passing GNN (MP-GNN), as the simplest GNN structure, is frequently used as a fast approximation of SB and we find that not all MILPs's SB can be represented with MP-GNN.
1 code implementation • 20 Oct 2023 • Haoyu Wang, Jialin Liu, Xiaohan Chen, Xinshang Wang, Pan Li, Wotao Yin
Mixed-integer linear programming (MILP) stands as a notable NP-hard problem pivotal to numerous crucial industrial applications.
1 code implementation • 29 May 2023 • Jialin Liu, Xiaohan Chen, Zhangyang Wang, Wotao Yin, HanQin Cai
Learning to Optimize (L2O), a technique that utilizes machine learning to learn an optimization algorithm automatically from data, has gained arising attention in recent years.
1 code implementation • 7 Jul 2022 • Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao Xiao, Boqian Wu, Tommi Kärkkäinen, Mykola Pechenizkiy, Decebal Mocanu, Zhangyang Wang
Transformers have quickly shined in the computer vision world since the emergence of Vision Transformers (ViTs).
1 code implementation • ICLR 2022 • Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy
In this paper, we focus on sparse training and highlight a perhaps counter-intuitive finding, that random pruning at initialization can be quite powerful for the sparse training of modern neural networks.
1 code implementation • 18 Dec 2021 • Sameer Bibikar, Haris Vikalo, Zhangyang Wang, Xiaohan Chen
Federated learning (FL) enables distribution of machine learning workloads from the cloud to resource-limited edge devices.
1 code implementation • NeurIPS 2021 • Xiaohan Chen, Jialin Liu, Zhangyang Wang, Wotao Yin
Learned Iterative Shrinkage-Thresholding Algorithm (LISTA) introduces the concept of unrolling an iterative algorithm and training it like a neural network.
no code implementations • 29 Sep 2021 • Qiming Wu, Xiaohan Chen, Yifan Jiang, Pan Zhou, Zhangyang Wang
Drawing inspirations from the recently prosperous research on lottery ticket hypothesis (LTH), we conjecture and study a novel “lottery image prior” (LIP), stated as: given an (untrained or trained) DNN-based image prior, it will have a sparse subnetwork that can be training in isolation, to match the original DNN’s performance when being applied as a prior to various image inverse problems.
no code implementations • ICLR 2022 • Xiaohan Chen, Jason Zhang, Zhangyang Wang
In this work, we define an extended class of subnetworks in randomly initialized NNs called disguised subnetworks, which are not only "hidden" in the random networks but also "disguised" -- hence can only be "unmasked" with certain transformations on weights.
2 code implementations • NeurIPS 2021 • Xiaolong Ma, Geng Yuan, Xuan Shen, Tianlong Chen, Xuxi Chen, Xiaohan Chen, Ning Liu, Minghai Qin, Sijia Liu, Zhangyang Wang, Yanzhi Wang
Based on our analysis, we summarize a guideline for parameter settings in regards of specific architecture characteristics, which we hope to catalyze the research progress on the topic of lottery ticket hypothesis.
2 code implementations • ICLR 2022 • Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu, Mykola Pechenizkiy, Zhangyang Wang, Decebal Constantin Mocanu
Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks.
2 code implementations • NeurIPS 2021 • Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola Pechenizkiy, Zhangyang Wang, Decebal Constantin Mocanu
Works on lottery ticket hypothesis (LTH) and single-shot network pruning (SNIP) have raised a lot of attention currently on post-training pruning (iterative magnitude pruning), and before-training pruning (pruning at initialization).
Ranked #3 on Sparse Learning on ImageNet
no code implementations • ICLR 2021 • Tianjian Meng, Xiaohan Chen, Yifan Jiang, Zhangyang Wang
Unrolling is believed to incorporate the model-based prior with the learning capacity of deep learning.
1 code implementation • NeurIPS 2021 • Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Jingjing Liu, Zhangyang Wang
Based on these results, we articulate the Elastic Lottery Ticket Hypothesis (E-LTH): by mindfully replicating (or dropping) and re-ordering layers for one network, its corresponding winning ticket could be stretched (or squeezed) into a subnetwork for another deeper (or shallower) network from the same family, whose performance is nearly the same competitive as the latter's winning ticket directly found by IMP.
1 code implementation • 23 Mar 2021 • Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, Wotao Yin
It automates the design of an optimization method based on its performance on a set of training problems.
1 code implementation • 4 Jan 2021 • Xiaohan Chen, Yang Zhao, Yue Wang, Pengfei Xu, Haoran You, Chaojian Li, Yonggan Fu, Yingyan Lin, Zhangyang Wang
Results show that: 1) applied to inference, SD achieves up to 2. 44x energy efficiency as evaluated via real hardware implementations; 2) applied to training, SD leads to 10. 56x and 4. 48x reduction in the storage and training energy, with negligible accuracy loss compared to state-of-the-art training baselines.
no code implementations • ICLR 2021 • Jiayi Shen, Xiaohan Chen, Howard Heaton, Tianlong Chen, Jialin Liu, Wotao Yin, Zhangyang Wang
We first present Twin L2O, the first dedicated minimax L2O framework consisting of two LSTMs for updating min and max variables, respectively.
1 code implementation • ACL 2021 • Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang, Jingjing Liu
Heavily overparameterized language models such as BERT, XLNet and T5 have achieved impressive success in many NLP tasks.
1 code implementation • NeurIPS 2020 • Xiaohan Chen, Zhangyang Wang, Siyu Tang, Krikamol Muandet
Meta-learning improves generalization of machine learning models when faced with previously unseen tasks by leveraging experiences from different, yet related prior tasks.
1 code implementation • NeurIPS 2020 • Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng Li, Zihao Liu, Zhangyang Wang, Yingyan Lin
Multiplication (e. g., convolution) is arguably a cornerstone of modern deep neural networks (DNNs).
no code implementations • 7 May 2020 • Yang Zhao, Xiaohan Chen, Yue Wang, Chaojian Li, Haoran You, Yonggan Fu, Yuan Xie, Zhangyang Wang, Yingyan Lin
We present SmartExchange, an algorithm-hardware co-design framework to trade higher-cost memory storage/access for lower-cost computation, for energy-efficient inference of deep neural networks (DNNs).
1 code implementation • ICLR 2020 • Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G. Baraniuk, Zhangyang Wang, Yingyan Lin
Finally, we leverage the existence of EB tickets and the proposed mask distance to develop efficient training methods, which are achieved by first identifying EB tickets via low-cost schemes, and then continuing to train merely the EB tickets towards the target accuracy.
no code implementations • 4 Mar 2020 • Howard Heaton, Xiaohan Chen, Zhangyang Wang, Wotao Yin
Our numerical examples show convergence of Safe-L2O algorithms, even when the provided data is not from the distribution of training data.
no code implementations • 3 Mar 2020 • Zepeng Huo, Arash Pakbin, Xiaohan Chen, Nathan Hurley, Ye Yuan, Xiaoning Qian, Zhangyang Wang, Shuai Huang, Bobak Mortazavi
Activity recognition in wearable computing faces two key challenges: i) activity characteristics may be context-dependent and change under different contexts or situations; ii) unknown contexts and activities may occur from time to time, requiring flexibility and adaptability of the algorithm.
no code implementations • NeurIPS 2019 • Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan Lin, Zhangyang Wang
Extensive simulations and ablation studies, with real energy measurements from an FPGA board, confirm the superiority of our proposed strategies and demonstrate remarkable energy savings for training.
2 code implementations • 26 Sep 2019 • Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G. Baraniuk, Zhangyang Wang, Yingyan Lin
In this paper, we discover for the first time that the winning tickets can be identified at the very early training stage, which we term as early-bird (EB) tickets, via low-cost training schemes (e. g., early stopping and low-precision training) at large learning rates.
no code implementations • 25 Sep 2019 • Howard Heaton, Xiaohan Chen, Zhangyang Wang, Wotao Yin
Inferences by each network form solution estimates, and networks are trained to optimize these estimates for a particular distribution of data.
1 code implementation • 14 May 2019 • Ernest K. Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, Wotao Yin
Plug-and-play (PnP) is a non-convex framework that integrates modern denoising priors, such as BM3D or deep learning-based denoisers, into ADMM or other proximal algorithms.
no code implementations • ICLR 2019 • Jialin Liu, Xiaohan Chen, Zhangyang Wang, Wotao Yin
In this work, we propose Analytic LISTA (ALISTA), where the weight matrix in LISTA is computed as the solution to a data-free optimization problem, leaving only the stepsize and threshold parameters to data-driven learning.
1 code implementation • NeurIPS 2018 • Nitin Bansal, Xiaohan Chen, Zhangyang Wang
This paper seeks to answer the question: as the (near-) orthogonality of weights is found to be a favorable property for training deep convolutional neural networks, how can we enforce it in more effective and easy-to-use ways?
1 code implementation • NeurIPS 2018 • Nitin Bansal, Xiaohan Chen, Zhangyang Wang
This paper seeks to answer the question: as the (near-) orthogonality of weights is found to be a favorable property for training deep convolutional neural networks, how can we enforce it in more effective and easy-to-use ways?
3 code implementations • NeurIPS 2018 • Xiaohan Chen, Jialin Liu, Zhangyang Wang, Wotao Yin
In this work, we study unfolded ISTA (Iterative Shrinkage Thresholding Algorithm) for sparse signal recovery.