Search Results for author: Xiaokang Chen

Found 36 papers, 24 papers with code

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

3 code implementations22 Jan 2025 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, JianZhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.

 Ranked #1 on Multi-task Language Understanding on MMLU (using extra training data)

Mathematical Reasoning Multi-task Language Understanding +2

DeepSeek-V3 Technical Report

1 code implementation27 Dec 2024 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, JianZhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, Zizheng Pan

We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token.

Language Modeling Language Modelling

JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation

1 code implementation12 Nov 2024 Yiyang Ma, Xingchao Liu, Xiaokang Chen, Wen Liu, Chengyue Wu, Zhiyu Wu, Zizheng Pan, Zhenda Xie, Haowei Zhang, Xingkai Yu, Liang Zhao, Yisong Wang, Jiaying Liu, Chong Ruan

To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training.

Language Modeling Language Modelling +2

Elephant in the Room: Unveiling the Impact of Reward Model Quality in Alignment

no code implementations26 Sep 2024 Yan Liu, Xiaoyuan Yi, Xiaokang Chen, Jing Yao, Jingwei Yi, Daoguang Zan, Zheng Liu, Xing Xie, Tsung-Yi Ho

Despite the vital role reward models play in alignment, previous works have consistently overlooked their performance and used off-the-shelf reward models arbitrarily without verification, rendering the reward model ``\emph{an elephant in the room}''.

The Devil is in the Neurons: Interpreting and Mitigating Social Biases in Pre-trained Language Models

1 code implementation14 Jun 2024 Yan Liu, Yu Liu, Xiaokang Chen, Pin-Yu Chen, Daoguang Zan, Min-Yen Kan, Tsung-Yi Ho

As a result, previous debiasing methods mainly finetune or even pre-train language models on newly constructed anti-stereotypical datasets, which are high-cost.

Fairness Language Modeling +1

DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

4 code implementations7 May 2024 DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, JianZhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai Yu, Xinnan Song, Xinyi Zhou, Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao, Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo, Yuchen Zhu, Yuduan Wang, Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang You, Yuxuan Liu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong Shao, Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, Ziwei Xie

MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation.

Language Modeling Language Modelling +1

InTeX: Interactive Text-to-texture Synthesis via Unified Depth-aware Inpainting

no code implementations18 Mar 2024 Jiaxiang Tang, Ruijie Lu, Xiaokang Chen, Xiang Wen, Gang Zeng, Ziwei Liu

Text-to-texture synthesis has become a new frontier in 3D content creation thanks to the recent advances in text-to-image models.

Texture Synthesis

LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation

1 code implementation7 Feb 2024 Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, Ziwei Liu

2) 3D Backbone: We present an asymmetric U-Net as a high-throughput backbone operating on multi-view images, which can be produced from text or single-view image input by leveraging multi-view diffusion models.

Interactive Segment Anything NeRF with Feature Imitation

no code implementations25 May 2023 Xiaokang Chen, Jiaxiang Tang, Diwen Wan, Jingbo Wang, Gang Zeng

We propose to imitate the backbone feature of off-the-shelf perception models to achieve zero-shot semantic segmentation with NeRF.

Decoder NeRF +3

Uncovering and Categorizing Social Biases in Text-to-SQL

1 code implementation25 May 2023 Yan Liu, Yan Gao, Zhe Su, Xiaokang Chen, Elliott Ash, Jian-Guang Lou

In this work, we aim to uncover and categorize social biases in Text-to-SQL models.

Text-To-SQL

Real-time 3D Semantic Scene Completion Via Feature Aggregation and Conditioned Prediction

no code implementations20 Mar 2023 Xiaokang Chen, Yajie Xing, Gang Zeng

In this paper, we propose a real-time semantic scene completion method with a feature aggregation strategy and conditioned prediction module.

3D Semantic Scene Completion Prediction

Parallel Sentence-Level Explanation Generation for Real-World Low-Resource Scenarios

no code implementations21 Feb 2023 Yan Liu, Xiaokang Chen, Qi Dai

However, current works pursuing sentence-level explanations rely heavily on annotated training data, which limits the development of interpretability to only a few tasks.

Explanation Generation Natural Language Inference +2

Understanding Self-Supervised Pretraining with Part-Aware Representation Learning

1 code implementation27 Jan 2023 Jie Zhu, Jiyang Qi, Mingyu Ding, Xiaokang Chen, Ping Luo, Xinggang Wang, Wenyu Liu, Leye Wang, Jingdong Wang

The study is mainly motivated by that random views, used in contrastive learning, and random masked (visible) patches, used in masked image modeling, are often about object parts.

Contrastive Learning Object +1

Real-time Neural Radiance Talking Portrait Synthesis via Audio-spatial Decomposition

2 code implementations22 Nov 2022 Jiaxiang Tang, Kaisiyuan Wang, Hang Zhou, Xiaokang Chen, Dongliang He, Tianshu Hu, Jingtuo Liu, Gang Zeng, Jingdong Wang

While dynamic Neural Radiance Fields (NeRF) have shown success in high-fidelity 3D modeling of talking portraits, the slow training and inference speed severely obstruct their potential usage.

NeRF Talking Face Generation

D$^3$ETR: Decoder Distillation for Detection Transformer

no code implementations17 Nov 2022 Xiaokang Chen, Jiahui Chen, Yan Liu, Gang Zeng

Specifically, Adaptive Matching applies bipartite matching to adaptively match the outputs of the teacher and the student in each decoder layer, while Fixed Matching fixes the correspondence between the outputs of the teacher and the student with the same object queries, with the teacher's fixed object queries fed to the decoder of the student as an auxiliary group.

Decoder Knowledge Distillation

Group DETR v2: Strong Object Detector with Encoder-Decoder Pretraining

no code implementations arXiv 2022 Qiang Chen, Jian Wang, Chuchu Han, Shan Zhang, Zexian Li, Xiaokang Chen, Jiahui Chen, Xiaodi Wang, Shuming Han, Gang Zhang, Haocheng Feng, Kun Yao, Junyu Han, Errui Ding, Jingdong Wang

The training process consists of self-supervised pretraining and finetuning a ViT-Huge encoder on ImageNet-1K, pretraining the detector on Object365, and finally finetuning it on COCO.

Decoder Object +2

Group DETR: Fast DETR Training with Group-Wise One-to-Many Assignment

2 code implementations ICCV 2023 Qiang Chen, Xiaokang Chen, Jian Wang, Shan Zhang, Kun Yao, Haocheng Feng, Junyu Han, Errui Ding, Gang Zeng, Jingdong Wang

Detection transformer (DETR) relies on one-to-one assignment, assigning one ground-truth object to one prediction, for end-to-end detection without NMS post-processing.

Data Augmentation Decoder +3

Conditional DETR V2: Efficient Detection Transformer with Box Queries

no code implementations18 Jul 2022 Xiaokang Chen, Fangyun Wei, Gang Zeng, Jingdong Wang

Inspired by Conditional DETR, an improved DETR with fast training convergence, that presented box queries (originally called spatial queries) for internal decoder layers, we reformulate the object query into the format of the box query that is a composition of the embeddings of the reference point and the transformation of the box with respect to the reference point.

Decoder Object +2

Compressible-composable NeRF via Rank-residual Decomposition

2 code implementations30 May 2022 Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, Gang Zeng

To circumvent the hurdle, in this paper, we present an explicit neural field representation that enables efficient and convenient manipulation of models.

NeRF

Point Scene Understanding via Disentangled Instance Mesh Reconstruction

1 code implementation31 Mar 2022 Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, Gang Zeng

Semantic scene reconstruction from point cloud is an essential and challenging task for 3D scene understanding.

Retrieval Scene Understanding

MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation

no code implementations28 Mar 2022 Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang

For instance, our approach achieves a 66. 4\% mAP with the 0. 5 IoU threshold on the ScanNetV2 test set, which is 1. 9\% higher than the state-of-the-art method.

3D Instance Segmentation Semantic Segmentation

Context Autoencoder for Self-Supervised Representation Learning

6 code implementations7 Feb 2022 Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shentong Mo, Yunhao Wang, Shumin Han, Ping Luo, Gang Zeng, Jingdong Wang

The pretraining tasks include two tasks: masked representation prediction - predict the representations for the masked patches, and masked patch reconstruction - reconstruct the masked patches.

Decoder Instance Segmentation +6

Not All Voxels Are Equal: Semantic Scene Completion from the Point-Voxel Perspective

no code implementations24 Dec 2021 Xiaokang Chen, Jiaxiang Tang, Jingbo Wang, Gang Zeng

Firstly, we transfer the voxelized scenes to point clouds by removing these visible empty voxels and adopt a deep point stream to capture semantic information from the scene efficiently.

3D Semantic Scene Completion All

Conditional DETR for Fast Training Convergence

4 code implementations ICCV 2021 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang

Our approach, named conditional DETR, learns a conditional spatial query from the decoder embedding for decoder multi-head cross-attention.

Decoder Object +2

Joint Implicit Image Function for Guided Depth Super-Resolution

1 code implementation19 Jul 2021 Jiaxiang Tang, Xiaokang Chen, Gang Zeng

Inspired by the recent progress in implicit neural representation, we propose to formulate the guided super-resolution as a neural implicit image interpolation problem, where we take the form of a general image interpolation but use a novel Joint Implicit Image Function (JIIF) representation to learn both the interpolation weights and values.

Graph Attention Super-Resolution

Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation

11 code implementations ECCV 2020 Yuhui Yuan, Xiaokang Chen, Xilin Chen, Jingdong Wang

We empirically demonstrate that the proposed approach achieves competitive performance on various challenging semantic segmentation benchmarks: Cityscapes, ADE20K, LIP, PASCAL-Context, and COCO-Stuff.

Decoder Object +2

Cannot find the paper you are looking for? You can Submit a new open access paper.